
1

ECS 189H
WEB PROGRAMMING

4/14

CSS override rules

!  CSS stands for “Cascading Style Sheets”
!  What this means is that you can link several CSS

style sheets to one Web page; we’ve already done
this with “reset.css” and our page-specific css files.

!  It is easy to end up with multiple contradictory
values for a single property.

!  How to settle conflicts?

CSS override rules

!  First: use the most specific specification:

 p.bird {
 background-color: lightblue;
 }

p {
 background-color: pink;

}

CSS override rules

!  Second: Use last specified property
 p.bird {

 background-color: lightblue;
 }
p.bird {
 background-color: pink;

}

!  This is why media query has to come after default

Dynamic Web pages

!  Media queries respond to change in viewport size,
but we often want to change the page in response
to user interaction.

!  Could always request a new Web page from the
server after user input. What is the problem with
that?

Dynamic Web pages

!  Media queries respond to change in viewport size,
but we often want to change the page in response
to user interaction.

!  Could always request a new Web page from the
server after user input. What is the problem with
that?

!  Not a good idea because 1) it is slow and 2) it
makes a flash.

!  We make dynamic pages with Javascript.

2

Javascript

!  Javascript is a language, interpreted by the
browser, that can be used to change the Web page
(add or remove elements, change properties like
color, etc).

Object-oriented programming

!  Javascript is an object-oriented language
!  An object is a collection of data, grouped together

with functions that act on that data
!  Functions belonging to objects are called methods
!  Data belonging to objects are called properties

 /* obj is an object */
 obj.someData /* a property */
 obj.aFunction() /* a method */

DOM

!  Most importantly, the HTML document is an object
that is available for the Javascript to modify.

!  It has a lot of built-in methods.
!  It’s properties are all of the elements

!  This is the DOM – the Document Object Model

The DOM is a tree

document

head body

h1 p div p

The DOM is a tree

document

head body

h1 p div p

img p

The DOM is a tree

document

head body

h1 p div p

style

color font

id The CSS
properties of the
p object are the
properties of it’s
style in the DOM

3

Javascript Example with Button

!  The HTML:

<p id="theText"> Here is a paragraph. </p>
<button onclick="buttonAction()">click me</button>

!  “button” is an HTML element
!  It’s onclick property defines the Javascript function

that runs when the button is clicked.

Where is the Javascript?

!  Just like css, let’s always put Javascript in it’s own
file.

!  Links to scripts can go anywhere in an HTML file.
!  Good to link them somewhere consistent. Turns out

the best place to put them is after all the HTML.

…
<script src="js/actions.js"> </script>
</body>

The actual script

/* the action taken by the button */
function buttonAction() {

 var demoPgh = document.getElementById("theText");
 demoPgh.textContents = "Now it is different!";

}
!  Whitespace does not matter
!  Lines end with semi-colons
!  Curley brackets group blocks of code
!  It looks like C or Java. It isn’t ☺

The actual script

/* the action taken by the button */
function buttonAction() {

 var demoPgh = document.getElementById("theText");
 demoPgh.textContents = "Now it is different!";

}

!  “document” is the DOM object corresponding to our
whole HTML document

!  getElementById is a very useful built-in method

The actual script

/* the action taken by the button */
function buttonAction() {

 var demoPgh = document.getElementById("theText");
 demoPgh.textContents = "Now it is different!";

}

!  “demoPgh” is a new variable we’re defining.
!  It’s value is the paragraph object with id “theText”
!  textContents is one of its properties, containing the

text of the paragraph.

Javascript runs in the browser

!  The Javascript code is run by the browser while
executing the HTML file, as soon as it sees the
<script> tag.

!  But the text of the paragraph does not change
when the HTML file is executed – it does not change
until the button is pushed. Why?

4

Javascript runs in the browser

!  The Javascript code is run by the browser while
executing the HTML file, as soon as it sees the
<script> tag.

!  But the text of the paragraph does not change
when the HTML file is executed – it does not change
until the button is pushed. Why?

!  This code just defines a function; the function is not
run until it is called.

!  The function is run when the button is pushed

 onclick=”buttonAction()"

Javascript outside of functions

!  Does get run immediately when the page is loaded.

var demoPgh2 = document.getElementById("theText");
demoPgh2.style.color = “red”;
!  demoPgh2 is a new variable containing the same

paragraph
!  All elements have a property “style” containing the

properties assigned by CSS.
!  The color property is changed right after the page is

loaded

Placement of the <script> tag

!  So why is it a good idea to put the script tag at the
end of the HTML file?

Placement of the <script> tag

!  So why is it a good idea to put the script tag at the
end of the HTML file?

!  All the DOM elements it might want to change, using
code outside of any function, will have been
defined already, and whatever values were
assigned by the .css files will have been set.

Strings

!  Strings are text data.
!  Can use either single or double quotes, or both:

 “ ‘Have another banana,’ she said. ”
!  Use ‘\n’ for newline and ‘\t’ for tab
!  Use + for string concatenation

 var code = “32”;
 var outStr = “Today’s code is: “+code;
 // outStr contains “Today’s code is: 32”

Numbers

!  Only floating point, although may be written
differently; there are no integers!

!  Conversion is automatic!
!  This can lead to some interesting behavior, ie:

 var a = 5 * ”2.0”;

 // a = 10 – the string became a number

 var b = 5 + “2.0”;
 // b = “52.0” … why?

5

Explicit conversion

!  To prevent errors, best to explicitly convert:
 var b = Number(“2.0”)+5;

 var m = Number(“cow”); // m contains NaN
!  The value NaN means “not a number”
!  Can also convert explicitly to String

 var m = String(3)+2 // m contains “32”

