
1

ECS 189H
WEB PROGRAMMING

4/21

Design

Grading for Assn 3

!  Functionality (getting data, slider window) – 7/10
!  Matching design – 3/10

!  Get it working, then worry about how it looks.

Using the server

Yahoo Weather
API

Our App

URLs

JSON

Buttons,
textbox

Display

Javascript Object Notation

URL sent

<script src=“https://query.yahooapis.com/v1/public/
yql?q=select * from weather.forecast where woeid
in (select woeid from geo.places(1) where
text='davis,
ca')&format=json&callback=callbackFunction">
</script>

!  We sent the data request URL, by requesting a
script from the server.

!  Instead of a local address for the script, we use a
(long complex) remote URL. Anybody recognize the
syntax?

URL sent

<script src “https://query.yahooapis.com/v1/public/
yql?q=select * from weather.forecast where woeid
in (select woeid from geo.places(1) where
text='davis,
ca')&format=json&callback=callbackFunction">
</script>

!  callbackFunction() is a function we have to write. The
script the server sends back calls callbackFunction()
on the weather data object.

2

Script returned

callbackFunction({"query":{"count":
1,"created":"2016-04-21T15:36:48Z","lang":"en-
US","results":{"channel":{"units”:…

 …goes on and on.
!  The returned script calls our callbackFunction on a

Javascript object literal. So it’s like…

 function f(y) { return(y.cow); }
 f({“cow”:1});

JSONp

!  The name of the protocol – where we ask the server
for a JSON string, by pretending to ask for a script,
is called JSONp

!  It’s an unusual technique and not too many servers
support it (but Google search and Google maps
are two more common examples!)

!  More usual is communication from one Web server
to another, or so-called AJAX requests from a Web
page to its own server.

Why are we doing this?

!  Why are we pretending to ask for a script when
really we want data?

!  In general, a Web page is disabled from getting
data from a server other than its own.

!  This is a security measure, meant to deter “cross-site
scripting” attacks.

!  But, people really want Javascript libraries in their
browser code.

!  So we are allowed to get scripts from sources other
than our server!

Using the data

callbackFunction({"query":{"count":
1,"created":"2016-04-21T15:36:48Z","lang":"en-
US","results":{"channel":{"units”:…

!  To find the weather, callback function needs to
parse the object it gets as a parameter and find the
part of it containing the current weather and 10-
day forecast.

!  One way to figure out how to do that would be to
check the Yahoo documentation.

When does this happen?

!  When does the callback function get called?

When does this happen?

!  When does the callback function get called?
!  When the page gets loaded, and the browser gets

to the bottom of the page and hits the script tag,
executes the script retrieved from the URL.

!  This a great for loading the initial Davis weather
but how are we going to get the weather from
someplace else, when someone enters a zip code?

3

Even sleazier trick

!  Use document methods that modify the DOM to
remove the original script, and replace it with a new
one.

!  The browser executes whenever we modify the
DOM, to produce the new display.

!  So in this case it will fetch and call the new script!

Adding the text box and button

<input id="zipbox" type="text"
placeholder="zipcode or place name">

<button onclick="gotNewPlace()">submit</button>
!  Easiest to add button that will grab data from text

entry box
!  Beware of Websites that tell you to use a <form>,

kind of old-school complex tag that can be
replaced by a bit of Javascript

Getting text in Javascript

var newPlace =
document.getElementById("zipbox").value;

!  It’s the “value” property of the text box element.

Adding box to the HTML

var script = document.createElement('script');
script.src = “…”
script.id = “jsonpCall”;
document.body.appendChild(script);

!  Make a new DOM element, the add it as child
of the body.

!  The “…” is the complicated URL, hopefully
including the new location instead of Davis.

Removing the old script element

 var oldScript =
document.getElementById("jsonpCall");
 if (oldScript != null) {
 document.body.removeChild(oldScript);
 }

!  If there is no old script, we get the value null
!  null is a valid value in Javascript, just like true

