
1

ECS 189H
WEB PROGRAMMING

4/24

Design questions

!  What does the color scheme say?
!  What is the font with the skinny letters? Is it the

same as the regular font, only “thin”?
!  How do you choose where to put regular and where

to put thin font?
!  The graphics are icon-like, rather than say cartoon-

like or sketch-like. How does that work with the rest
of the design?

Some debugging

!  Web pages don’t show error messages when their
Javascript programs crash.

!  This includes bugs in the CSS and HTML as well as
Javascript.

!  The error messages do show up on the console.
Open it up if you suspect your program crashed!

!  In Chrome, View->Developer->Javascript Console

Breakpoints and stepping

!  Stops code while running (might have to reload
page or push button again to get to that line…)

!  Look at contents of variables by clicking on them
(one reason it is nice to use lots of variables)

!  Step from line to line to see execution

Using console.log()

!  You can print-debug using the console.log() function
!  This is your “printf” or “cout” function, results show

up on Javascript console
!  You can also use console.log() in the console

function showChildren(el) {

var children = el.childNodes;

for (var i=0; i<children.length; i++) {console.log(String(i)
+String(children[i])+"\n"); }

}

Global Variables

var left = 0;

!  You could define a global variable anywhere, but it
is good practice to put them at the top of the file.
Why?

!  Globals are especially troublesome in Javascript

2

Accidental global variables

var x = "outside”;

function f1 () {

 var x = "inside f1";
};

f1(); // global x contains “outside”

function f2 () {

 x = "inside f2";
};

f2(); // global x now contains “inside f2”

Inadvertent global variables

!  Evil Javascript feature: variables assigned a value
within a function but not defined with the “var”
keyword are assumed to be global.
!  If there is no such global variable, it is created.
!  If there is, it is changed.

!  Then if you use them by accident in another function,
they’ll remember the value from the first function
instead of being undefined.

!  Always be clear on where each variable is defined,
and whether it is local or global.

Using an object instead of a global

!  Instead of having left as a global, let’s make it a
property of the object that updates it and uses
it.

var leftButton = {“left”: 0}; // an empty object
// left is its property

// use alternative function declaration syntax
// to define a method for the object
leftButton.action = function () { … };

Two syntaxes to define a function

!  A function:

 var buttonAction = function () { …. }

!  A method:

 leftButton.action = function () { …. }

!  Emphasizes that functions are values like any other

Using a property inside a method

!  Refer to the object as “this” within it’s own methods.

 if (this.left < width-((200*n)+25)) {
 this.left = this.left+100; // slide all boxes
 ….

Helpful, but not perfect

!  We’re less likely to mistakenly set leftButton.left
than left.

!  But it is still a global variable, accessible throughout
the program.

!  How to make it really hidden inside the leftButton
object?

3

Object constructor with “new”

function CityWeather (cityParam,weatherParam) {
 this.city = cityParam;
 this.weather = weatherParam;

}

var davisWeather = new
CityWeather(“Davis”,”sunny”);

var chicagoWeather = new
CityWeather(“Chicago”,”raining”);

Constructor functions

!  Usually the name of a constructor function begins
with a capitol letter

!  If it has parameters, they often control the initial
settings of properties

!  The constructor function refers the object properties
using “this” since the constructor is a function,
belonging to an object, referring to its own
properties

Method in constructor function

…
 this.report = function() { console.log("The

weather in ",this.city," is ",this.weather);
…
davisWeather.report();

!  As usual, a method is a property that happens to
contain a function. In the function, the object itself is
referred to using “this”

Private data in an object

!  Constructor functions give us the opportunity to
define private data that can only be accessed by
methods of the object itself

!  Variables defined inside a constructor function, using
the “var” keyword, are local to the function (and
hence private).

!  This is very useful for encapsulation: making data
change only through well-defined interfaces

Private data

 …
 var today = “Monday”;
 this.report = function() { console.log("The

weather in ",this.city," is ",this.weather," on ",today);

!  The method can print out the property “today”
!  But “today” cannot be read or written from outside

the object

Private version of left

function leftButtonConstruct() {
 var left = 0;
 this.action = function () {
 …
 }

}

var leftButton = new leftButtonConstruct();

4

Variable scope

!  Private variables are available everywhere inside
their objects.

!  Any variable declared in a function is available
throughout the function (not just inside its block, like
in C)

!  Global variables (declared when the Javascript file
is loaded, outside any function) are available
throughout the file.

!  You can have both a global and a local variable
with the same name. But it is a terrible idea. Why?

