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Note on using your own computer 

!  Some people prefer to develop entirely on their 
own machines 

!  See “Setting up a Web server” in Interactive Data 
Visualization for the Web  

!  This is a wonderful book, btw, and free online!   
!  Use the port number we assigned you, even on your 

own machine 
!  Please make sure your code runs on the “real 

server” before turning it in; that is where we grade. 

PhotoIndex 

!  Upload photos to server 
!  Get Google Cloud Vision API to suggest what is in 

the images, producing keywords 
!  Build database of keywords and images 
!  Let user browse images by keywords 
!  Let user delete, correct and add keywords 

Google Cloud Vision API Demo 

AJAX requests 

!  Old-school design would send a new Web page 
every time a query needed to be answered 

!  Newer Web programming style sends data, often 
JSON, and then the browser code updates only 
features of the DOM that need to change.  

!  Advantages:  calmer interface, much of Web page 
stays the same, no flashing, better user experience 

!  Asynchronous JavaScript And XML (but often it’s 
JSON instead of XML) 

Flow of code 
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What should the request look like? 

!  It’s a URL with a query: 
138.68.25.50:????/query?.... 

!  We get to make up the query keys and values 
!  For now, let’s make up a query to return labels 

associated with an image: 
 img=hula 

On the server 

!  This is very simple, it will be replaced by something 
a lot more complicated in our final app 

!  Hardcode the labels as strings 
var labels = {hula:                                                            

"Dance, Performing Arts, Sports, Entertainment, 
Quinceañera, Event, Hula, Folk Dance",                                                                                     
eagle: "Bird, Beak, Bird Of Prey, Eagle, Vertebrate, 
Bald Eagle, Fauna, Accipitriformes, Wing",                                                              
redwoods: "Habitat, Vegetation, Natural 
Environment, Woodland, Tree, Forest, Green, 
Ecosystem, Rainforest, Old Growth Forest"};  
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On the server 

!  Parse the query and look up the image name 

 if (query) {         
  kvpair = query.split("=");         
  labelStr = labels[kvpair[1]];         
  if (labelStr) {             
     response.writeHead(200, {"Content-Type": 
"text/json"});             
        response.write(labelStr); } 

Error message for bad query 

else {             
 response.writeHead(404, {"Content-Type": "text/
plain"});             
 response.write("404 Not Found\n");        }         

response.end(); 

!  response.end() sends either answer. 

Works great from browser 

http://138.68.25.50:????/hello.html?img=hula 

!  But how would we get this data from inside a 
Javascript program?  

!  Example Web page:  labelPix.html; click on image 
to get labels 

!  Where in Javascript will we want to send the AJAX 
request?  

AJAX request 

!  Sent from image’s onclick function 
!  This code is run by the browser, when the button is 

pushed 

AJAX vs JSONp 

var oReq = new XMLHttpRequest(); 

!  When interacting with the Yahoo server, we got data 
by asking it to download a script. 

!  Interacting with our own server, we can ask for data 
directly.  

!  We do this with an XMLHttpRequest object, which has 
a bunch of methods to construct and send an HTTP 
request to the server 

Set up URL with query 

var url = "http://138.68.25.50:60401/query?
img="+imgName; 

!  As usual, we make the query by pasting together 
the right URL 

!  imgName here should be the name of one of the 
images 
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Set up a callback 

   function reqListener () {             
  var pgh = document.getElementById("labels");            

 pgh.textContent = this.responseText;         
 } 

!  Added to request object as a method, so this refers 
to the request 

!  When does this get run?  

Send off the request 

 // setup callback 
   oReq.addEventListener("load", reqListener);    

 // load occurs when operation is completed,  
 // response is back.       

   oReq.open("GET", url);  // writes HTTP req head 
 oReq.send();  // initiates transfer 

!  This is a GET HTTP request. 

Kinds of HTTP requests 

!  All HTTP requests initiate an exchange with the 
server.  There is no way for the server to initiate an 
exchange with the browser!  

!  GET – retrieves data or sends small amount of 
information in URL. Body is usually empty. Used to 
retrieve static pages or for queries.  

!  POST – send data to server, in body of HTTP 
request. 

!  There are others but they are rarely used. 

XMLHttpRequest 

!  Can be used for any kind of HTTP request 
!  Has all the basic parts of a request that we saw 

before in JSONp 
! URL containing a query string 
! Callback function to handle server response 
! Response shows up in responseText property 

!  Many frameworks cover XMLHttpRequest up to 
make it prettier 

!  There is a JQuery version, a D3 version, etc. 
!  All basically are this under the hood 


