
1

ECS 189
WEB PROGRAMMING

5/10

Note on using your own computer

!  Some people prefer to develop entirely on their
own machines

!  See “Setting up a Web server” in Interactive Data
Visualization for the Web

!  This is a wonderful book, btw, and free online!
!  Use the port number we assigned you, even on your

own machine
!  Please make sure your code runs on the “real

server” before turning it in; that is where we grade.

PhotoIndex

!  Upload photos to server
!  Get Google Cloud Vision API to suggest what is in

the images, producing keywords
!  Build database of keywords and images
!  Let user browse images by keywords
!  Let user delete, correct and add keywords

Google Cloud Vision API Demo

AJAX requests

!  Old-school design would send a new Web page
every time a query needed to be answered

!  Newer Web programming style sends data, often
JSON, and then the browser code updates only
features of the DOM that need to change.

!  Advantages: calmer interface, much of Web page
stays the same, no flashing, better user experience

!  Asynchronous JavaScript And XML (but often it’s
JSON instead of XML)

Flow of code

 Browser Server

Static handler,
public directory

Request Web
page

Load HTML,
CSS, js

2

Flow of code

 Browser Server

Button Function

Query handler

Callback function

 handler,
public directory

Request Web
page

Load HTML,
CSS, js

Flow of code

 Browser Server

 GET request
Button Function

Query handler

Callback function

Static handler,
public directory

Request Web
page

Flow of code

 Browser Server

JSON
response

Button Function

Query handler

Callback function

Static handler,
public directory

Request Web
page

Flow of code

 Browser Server

JSON
response

Button Function

Query handler

Callback function

Static handler,
public directory

Request Web
page

What should the request look like?

!  It’s a URL with a query:
138.68.25.50:????/query?....

!  We get to make up the query keys and values
!  For now, let’s make up a query to return labels

associated with an image:
 img=hula

On the server

!  This is very simple, it will be replaced by something
a lot more complicated in our final app

!  Hardcode the labels as strings
var labels = {hula:

"Dance, Performing Arts, Sports, Entertainment,
Quinceañera, Event, Hula, Folk Dance",
eagle: "Bird, Beak, Bird Of Prey, Eagle, Vertebrate,
Bald Eagle, Fauna, Accipitriformes, Wing",
redwoods: "Habitat, Vegetation, Natural
Environment, Woodland, Tree, Forest, Green,
Ecosystem, Rainforest, Old Growth Forest"};

3

On the server

!  Parse the query and look up the image name

 if (query) {
 kvpair = query.split("=");
 labelStr = labels[kvpair[1]];
 if (labelStr) {
 response.writeHead(200, {"Content-Type":
"text/json"});
 response.write(labelStr); }

Error message for bad query

else {
 response.writeHead(404, {"Content-Type": "text/
plain"});
 response.write("404 Not Found\n"); }

response.end();

!  response.end() sends either answer.

Works great from browser

http://138.68.25.50:????/hello.html?img=hula

!  But how would we get this data from inside a
Javascript program?

!  Example Web page: labelPix.html; click on image
to get labels

!  Where in Javascript will we want to send the AJAX
request?

AJAX request

!  Sent from image’s onclick function
!  This code is run by the browser, when the button is

pushed

AJAX vs JSONp

var oReq = new XMLHttpRequest();

!  When interacting with the Yahoo server, we got data
by asking it to download a script.

!  Interacting with our own server, we can ask for data
directly.

!  We do this with an XMLHttpRequest object, which has
a bunch of methods to construct and send an HTTP
request to the server

Set up URL with query

var url = "http://138.68.25.50:60401/query?
img="+imgName;

!  As usual, we make the query by pasting together
the right URL

!  imgName here should be the name of one of the
images

4

Set up a callback

 function reqListener () {
 var pgh = document.getElementById("labels");

 pgh.textContent = this.responseText;
 }

!  Added to request object as a method, so this refers
to the request

!  When does this get run?

Send off the request

 // setup callback
 oReq.addEventListener("load", reqListener);

 // load occurs when operation is completed,
 // response is back.

 oReq.open("GET", url); // writes HTTP req head
 oReq.send(); // initiates transfer

!  This is a GET HTTP request.

Kinds of HTTP requests

!  All HTTP requests initiate an exchange with the
server. There is no way for the server to initiate an
exchange with the browser!

!  GET – retrieves data or sends small amount of
information in URL. Body is usually empty. Used to
retrieve static pages or for queries.

!  POST – send data to server, in body of HTTP
request.

!  There are others but they are rarely used.

XMLHttpRequest

!  Can be used for any kind of HTTP request
!  Has all the basic parts of a request that we saw

before in JSONp
! URL containing a query string
! Callback function to handle server response
! Response shows up in responseText property

!  Many frameworks cover XMLHttpRequest up to
make it prettier

!  There is a JQuery version, a D3 version, etc.
!  All basically are this under the hood

