
1

ECS 189
WEB PROGRAMMING

5/19

RESTful APIs

!  We’re implementing what is called a RESTful API
!  ReST stands for “representational state transfer”
!  The term was coined in 2000 by Roy Fielding, who

at the time was PhD student at UCI.
!  Some basic REST ideas:

! Client (browser here) needs to know only a single URL
to access the resource (photoBooth app); further
interactions are learned as it goes along

! Server does not need to know or remember anything
about state of client

Browser’s view

Browser

Server at that
URL

HTTP request: URL

of page on server

Browser’s view

Browser

Server with URL

HTTP response: First

Web page

Browser’s view

Which will It be for photoBooth?

Runs HTML, CSS,
Javascript until either
waiting for user input
or needs more server

data…

Server with URL

First thread

Browser’s view

Needs more server
data…sends request,

sets callback and
goes to sleep

Server with URL

HTTP request:
URL requesting
JSON data

2

Browser’s view

When will it wake back up?

ZZZ…

Server with URL

Browser’s view

Callback wakes up
and runs, changing

DOM, until ready for
user input, then goes

to sleep.

Server with URL

HTTP response

containing JSON Second thread

Browser’s view

When will it wake back up?

ZZZ…

Server with URL

Browser’s view

Button action called,
maybe when user
deletes a label

Server with URL

Third thread

Browser’s view

… requests deletion,
sets callback, goes

back to sleep

Server with URL

Third thread

URL requesting
label delete

Browser’s view

When will it wake back up?

ZZZ…

Server with URL

3

Browser’s view

Callback updates
DOM to remove label,

goes back to sleep

Server with URL

Fifth thread

HTTP response
reporting done

Server’s view

!  The world is full of potential clients.

Server

Browser

Database

Server’s view

Server

Browser

HTTP request
for Web page

Database

Server’s view

Static server
gets file from
 /public, puts

together
response

Browser

First thread

Database

Server’s view

!  Server sends back response object that is self-
addressed to browser.

Server

Browser response with
Web page

Database

Server’s view

!  The server remembers nothing about the transaction.

ZZZ…
Browser

Database

4

Server’s view

Server

Browser
HTTP request

for JSON
data

Database

Server’s view

Puts together DB
request, sets up
callback and
calls db.all() Browser

Second thread

Database

DB call

Server’s view

!  The server callback remembers response object

ZZZ…
Browser

Database

Server’s view

Callback wakes
up, gets data

from DB, puts it
into response
object body…

Browser

Database

DB response

Third thread

Server’s view

Sends off HTTP
response

Browser

Database

Third thread

response with
JSON

Server’s view

!  Server remembers nothing about transaction

ZZZ…
Browser

Database

5

Last time

!  DB operations using SQL
!  One server thread might fire off multiple DB

operations
!  Order in which DB operations complete is not

necessarily the order in which they are issued.
!  When calling two DB operations in the same thread

you can serialize them using db.serialize().
!  We’ll see a more typical approach in a bit.

DB operations in different threads

!  Can’t be serialized.
!  On a production server, many HTTP requests might

be in process at once.

Production server

!  Many callback-HTTP response object pairs waiting
for their DB responses

ZZZ…
Database

Database state

!  No way to order these operations.
!  Best we can hope for is to ensure that database is

always in some meaningful valid state, eg. we don’t
have half a label written when it is read by
someone else.

!  Database systems work hard to ensure this.

Debugging – see database

amenta@cs189h:$ squlite3

 …Use ".open FILENAME" to reopen on a persistent database.

sqlite> .open photos.db
sqlite> select * from PhotoLabels;

"  hula.jpg|Dance, Event, Hula, Folk Dance|0

"  eagle.jpg||0

"  redwoods.jpg||0

sqlite> .quit

!  You can also change items using “update”, etc.

Debugging

!  SQLite3 is nasty to debug, run-time errors just crash,
do not tell you where it failed

!  Always handle errors and print something on the
error callbacks, gives you a fighting chance at
figuring out what is going on!

6

Editing the labels string

!  Need to read it, then write it.
!  Chain together the two operations, using their

callbacks to guarantee sequence

Editing the labels string

ZZZ
Database Add label “Lei”

to “hula.jpg”

Editing the labels string

Parse request,
set up

“getCallback”,
construct DB

command to get
current labels

Database

SELECT – get
labels

Editing the labels string

ZZZ

Database

Editing the labels string

ZZZ

Database DB response
containing data

Editing the labels string

Run
“getCallback”,
change string,

….

Database

7

Editing the labels string

…set up update
callback,

request DB
updates.

Database DB update
command

Editing the labels string

ZZZ

Database

Editing the labels string

ZZZ

Database Response all
OK

Editing the labels string

Fill in response
object, tell

browser all OK.

Database Response all
OK

Editing the labels string

Send off
response and
get back to

sleep

Database
HTTP response

all OK

Parse the query

var querystring = require('querystring');
function answer(query, response) {

 queryObj = querystring.parse(query);
 if (queryObj.op == "add") {
 var newLabel = queryObj.label;
 var imageFile = queryObj.img;
 if (newLabel && imageFile) {
 …

8

Call DB to get current labels

db.get('SELECT labels FROM photoLabels WHERE
fileName = ?',

 [imageFile],
 getCallback);

!  Using “fill in the blanks” Node.js SQLite3 syntax

First callback

!  Defined inside “answer” so it has access to all local
variables – because it’s in the closure of “answer”!

function getCallback(err,data {
 …handle error…

 db.run('UPDATE photoLabels SET labels = ? WHERE
fileName = ?',

 [data.labels+", "+newLabel, imageFile],
updateCallback); }

Second callback

!  Also defined inside “answer”

function updateCallback(err) {
 …handle error…
 response.status(200);

 response.type("text/plain");
 response.send("added label "+newLabel+" to
 "+imageFile); }

!  Uses Express syntax, could also have used Node

Module for queries

!  Putting all the server code in one file will get messy
!  The code for answering queries will get big
!  Let’s put it in it’s own module
!  To make a file into a module add lines at the end to

tell it to export stuff

// function answer visible from outside as “answer”
exports.answer = answer;

Using the module in server file

!  Put pathname to file containing module as name of
module

 var queries = require("./queries");

!  Function to answer queries is now visible in
tripleThreatServer as:
 queries.answer(request,response);

