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RESTful APIs  

!  We’re implementing what is called a RESTful API 
!  ReST stands for “representational state transfer” 
!  The term was coined in 2000 by Roy Fielding, who 

at the time was PhD student at UCI. 
!  Some basic REST ideas: 

! Client (browser here) needs to know only a single URL 
to access the resource (photoBooth app); further 
interactions are learned as it goes along 

! Server does not need to know or remember anything 
about state of client 
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!  The world is full of potential clients.  
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!  Server sends back response object that is self-
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Last time 

!  DB operations using SQL 
!  One server thread might fire off multiple DB 

operations 
!  Order in which DB operations complete is not 

necessarily the order in which they are issued. 
!  When calling two DB operations in the same thread 

you can serialize them using db.serialize().  
!  We’ll see a more typical approach in a bit.  

DB operations in different threads 

!  Can’t be serialized.  
!  On a production server, many HTTP requests might 

be in process at once.  

Production server  

!  Many callback-HTTP response object pairs waiting 
for their DB responses 
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!  No way to order these operations. 
!  Best we can hope for is to ensure that database is 

always in some meaningful valid state, eg. we don’t 
have half a label written when it is read by 
someone else. 

!  Database systems work hard to ensure this.  

Debugging – see database 

amenta@cs189h:$ squlite3 

 …Use ".open FILENAME" to reopen on a persistent database. 

sqlite> .open photos.db 
sqlite> select * from PhotoLabels;  

"  hula.jpg|Dance, Event, Hula, Folk Dance|0 

"  eagle.jpg||0 

"  redwoods.jpg||0 

sqlite> .quit 

!  You can also change items using “update”, etc. 

Debugging 

!  SQLite3 is nasty to debug, run-time errors just crash, 
do not tell you where it failed  

!  Always handle errors and print something on the 
error callbacks, gives you a fighting chance at 
figuring out what is going on! 
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Editing the labels string 

!  Need to read it, then write it. 
!  Chain together the two operations, using their 

callbacks to guarantee sequence 
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Editing the labels string 
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Parse the query 

var querystring = require('querystring');  
function answer(query, response) {     

 queryObj = querystring.parse(query);     
 if (queryObj.op == "add") {         
  var newLabel = queryObj.label;         
  var imageFile = queryObj.img;        
   if (newLabel && imageFile) { 
   … 
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Call DB to get current labels 

db.get( 'SELECT labels FROM photoLabels WHERE 
fileName = ?',  

   [imageFile],  
   getCallback); 

!  Using “fill in the blanks” Node.js SQLite3 syntax 

First callback  

!  Defined inside “answer” so it has access to all local 
variables – because it’s in the closure of “answer”! 

function getCallback(err,data {  
   …handle error… 

 db.run('UPDATE photoLabels SET labels = ? WHERE 
fileName = ?',  

   [data.labels+", "+newLabel, imageFile],                        
updateCallback);       }  

Second callback  

!  Also defined inside “answer” 

function updateCallback(err) { 
 …handle error… 
  response.status(200);                    

 response.type("text/plain");                    
 response.send("added label "+newLabel+" to 
 "+imageFile);  } 

!  Uses Express syntax, could also have used Node 

Module for queries 

!  Putting all the server code in one file will get messy 
!  The code for answering queries will get big 
!  Let’s put it in it’s own module 
!  To make a file into a module add lines at the end to 

tell it to export stuff 

// function answer visible from outside as “answer” 
exports.answer = answer; 

Using the module in server file 

!  Put pathname to file containing module as name of 
module 

 var queries = require("./queries"); 

!  Function to answer queries is now visible in 
tripleThreatServer as: 
 queries.answer(request,response); 


