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ECS 189H 
WEB PROGRAMMING 

5/22 

Announcements 

LOTS OF EXTENSIONS! 

!  Photobooth Part 1 due midnight THURSDAY 5/25 
! A little extra credit if you hand it in tonight 

!  Part 2 due Tues 5/30 
!  Midterm 2 Friday 6/2 
!  My lab hours 4-5:30,  71 Kemper 
!  No new material in this lecture 

Asynchronous programming 

!  Request-response pattern we see in different forms: 
! Client makes request to server 
! Callback function run when response comes back 

!  Interaction is always initiated by client 
!  In each case – which is client? which is server?  
!  Four major elements:  

!  specify request  
!  set up callback  
!  send off request 
! callback function run when response gets back 

HTTP protocol 

!  Requires this request-response pattern for loading 
Web pages, AJAX interactions. 

!  But we find the same thing in JSONp, DB operations 

JSONp callback 

script.src = "https://query.yahooapis.com/v1/public/
yql?q=select * from weather.forecast where woeid 
in (select woeid from geo.places(1) where 
text='"+newPlace
+"')&format=json&callback=callbackFunction” 

document.body.appendChild(script); 

function callbackFunction(data) { 
   var pgh = document.getElementById("forecast"); 

pgh.textContent = JSON.stringify(data);  } 

AJAX request 

var oReq = new XMLHttpRequest(); 
var url = "http://138.68.25.50:?????/query?  

     op=dumpDB”;  
oReq.open("GET", url);  
function respCallback () {  

 var dataArray = JSON.parse(this.responseText);  
 addPhotosToDOM(dataArray); }  

oReq.onload(respCallback); 
oReq.send(); 
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Photo upload 

var oReq = new XMLHttpRequest(); 
var url = "http://138.68.25.50:????";  
var selectedFile = 

document.getElementById('fileSelector').files[0];  
var formData = new FormData(); 
formData.append("userfile", selectedFile);  
oReq.open("POST", url, true);  
oReq.onload = function() 

{ console.log(oReq.responseText) }; 
oReq.send(formData); 

DP operation  

db.all('SELECT * FROM photoLabels',dataCallback); 
function dataCallback(err, tableData) { 

  if (err) {  
  console.log(err); 
  sendCode(400,reponse,”error reading DB” } 

   else {  
  sendCode(200,response,tableData); }  

}  

Why are DB ops asynchronous?  Why are DB ops asynchronous?  

!  Server should always be ready to respond as new 
HTTP requests come in 

!  A database request may take a while; disk access 
can be slow 

!  Server should not wait for a database operation to 
finish before getting started on new requests 

Why… 

!  …are AJAX requests and API requests, made from 
the browser, asynchronous?  

Why… 

!  …are AJAX requests and API requests from the 
browser asynchronous? 

!  Browser should respond to user button pushes, etc, 
immediately; should never get hung up waiting for 
requests running over the internet 

!  Especially when connections might be poor!  
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Bad example:  DB request 

   tableData =  
      db.all('SELECT * FROM photoLabels',dataCallback); 
   console.log(tableData); 

Prints out: 
tableData contains:  Database { open: false, filename: 

'photos.db', mode: 65542 }  
What’s wrong?  

Browser control flow 
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Request and response 

!  The server’s job is to get HTTP requests and produce 
the appropriate HTTP response for each one.  

!  It is called on two objects, request and response. 
The response object is like a pre-addressed 
envelope, addressed to the machine that made the 
request.  

(You are the 
server, Netflix is 
the browser, in 
this metaphor.) 
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The response object 

!  The static server puts the requested static file into 
the response object, and sends it off 

!  The dynamic query server computes a response, 
often in JSON but also potentially in HTML, XML…, 
puts that into the response object, and sends it off 

!  Response object passed to function that will fill it in 
!  Often putting together the response requires doing 

an API or database request, so it won’t be done 
immediately but in a callback 
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Closure 

!  Example from “Eloquent Javascript”, Chapter 3. 
function multiplier(factor) {  

 return function inner (number) {  
  return number * factor; };  
 }  

var twice = multiplier(2);   
console.log(twice(5)); 
var thrice = multiplier(3); 
console.log(thrice(5)); 

Closure 

function multiplier(factor) {  
 return function inner (number) {  
  return number * factor; };  
 } 

!  Function that returns a function 
!  factor is a local variable inside multiplier 
!  inner remembers value of factor when it was 

created 

Closure 

function multiplier(factor) {  
 // return function inner (number) {  

   return function (number) {  
  return number * factor; };  
 } 

!  Anonymous function version 
!  No reason inner function has to have a name; it will 

never be called except here 

Using closure to pass response object 

!  From lecture Friday, how to answer query to add a 
label: 

function answer(query, response) { 

 … get current labels from DB via SQL request-response cycle, 
edit labels, send off UPDATE SQL command with callback… 

     function updateCallback(err) {  

        if (err) {  sendCode(400,response,”not found"); }  

       else { sendCode(200,response, 

         "added label "+newLabel+ " to "+imageFile); } } 

  } // close answer(query, response) 

Using closure to pass response object 

function answer(query, response) { 

 … get current labels from DB via SQL request-response cycle, 
edit labels, send off UPDATE SQL command with callback… 

     function updateCallback(err) {  

        if (err) {  sendCode(400,response,”not found"); }  

       else { sendCode(200,response, 

         "added label "+newLabel+ " to "+imageFile); } } 

  } // close answer(query, response) 

!  updateCallback is defined inside answer, so it has 
access to all the variables of answer, even though it 
runs much later 

Looping over image list 

!  Creating a separate onclick function for every 
image can be done neatly using closure and an 
anonymous funciton 

!  Once you query the database, you’ll get an array 
containing the DB contents: 

tableData = [{filename: "hula.jpg", labels: "Dance, Hula, Lei", 
favorite: 0},     

                    {filename: "eagle.jpg", labels: "Eagle, Bird, Beak", 
favorite: 0},     

                    {filename: "redwoods.jpg", labels: "Forest, Trees, 
Redwoods", favorite: 0}] 
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Looping over image list 

!  Loop over this list to insert a div containing an img 
for each picture 

!  We’d like to add an onclick function for each div (or 
for the hamburger button we put on each div).  But 
we CANNOT do this (why?): 

for (i=0; i<tableData.length; i++) { 
…  
   newDiv.onclick = showImageName("Photo ”+i+", 

"+labels, i);  
… } 

Looping over image list 

!  We also cannot do this! 

newDiv.onclick = function () { 
 showImageName("Photo "+i+", "+labels, i);   

} 

!  There is a separate onclick for each photo.  
!  But there is only one variable i, and when the 

onclick is called it will use whatever value i last 
contained. 

Looping over image list 

!  But we can do this!  
function createNewOnclick(index,labels) { 

 return function() { 
  showImageName("Photo "+index+", "+labels, 
index); } } 

newDiv.onclick = createNewOnclick(i, labels); 
!  createNewOnclick returns a function.   
!  That anonymous function is in the closure of 

createNewOnclick, and remembers its local 
variables  


