
1

ECS 189H
WEB PROGRAMMING

5/22

Announcements

LOTS OF EXTENSIONS!

!  Photobooth Part 1 due midnight THURSDAY 5/25
! A little extra credit if you hand it in tonight

!  Part 2 due Tues 5/30
!  Midterm 2 Friday 6/2
!  My lab hours 4-5:30, 71 Kemper
!  No new material in this lecture

Asynchronous programming

!  Request-response pattern we see in different forms:
! Client makes request to server
! Callback function run when response comes back

!  Interaction is always initiated by client
!  In each case – which is client? which is server?
!  Four major elements:

!  specify request
!  set up callback
!  send off request
! callback function run when response gets back

HTTP protocol

!  Requires this request-response pattern for loading
Web pages, AJAX interactions.

!  But we find the same thing in JSONp, DB operations

JSONp callback

script.src = "https://query.yahooapis.com/v1/public/
yql?q=select * from weather.forecast where woeid
in (select woeid from geo.places(1) where
text='"+newPlace
+"')&format=json&callback=callbackFunction”

document.body.appendChild(script);

function callbackFunction(data) {
 var pgh = document.getElementById("forecast");

pgh.textContent = JSON.stringify(data); }

AJAX request

var oReq = new XMLHttpRequest();
var url = "http://138.68.25.50:?????/query?

 op=dumpDB”;
oReq.open("GET", url);
function respCallback () {

 var dataArray = JSON.parse(this.responseText);
 addPhotosToDOM(dataArray); }

oReq.onload(respCallback);
oReq.send();

2

Photo upload

var oReq = new XMLHttpRequest();
var url = "http://138.68.25.50:????";
var selectedFile =

document.getElementById('fileSelector').files[0];
var formData = new FormData();
formData.append("userfile", selectedFile);
oReq.open("POST", url, true);
oReq.onload = function()

{ console.log(oReq.responseText) };
oReq.send(formData);

DP operation

db.all('SELECT * FROM photoLabels',dataCallback);
function dataCallback(err, tableData) {

 if (err) {
 console.log(err);
 sendCode(400,reponse,”error reading DB” }

 else {
 sendCode(200,response,tableData); }

}

Why are DB ops asynchronous? Why are DB ops asynchronous?

!  Server should always be ready to respond as new
HTTP requests come in

!  A database request may take a while; disk access
can be slow

!  Server should not wait for a database operation to
finish before getting started on new requests

Why…

!  …are AJAX requests and API requests, made from
the browser, asynchronous?

Why…

!  …are AJAX requests and API requests from the
browser asynchronous?

!  Browser should respond to user button pushes, etc,
immediately; should never get hung up waiting for
requests running over the internet

!  Especially when connections might be poor!

3

Bad example: DB request

 tableData =
 db.all('SELECT * FROM photoLabels',dataCallback);
 console.log(tableData);

Prints out:
tableData contains: Database { open: false, filename:

'photos.db', mode: 65542 }
What’s wrong?

Browser control flow

Queue of incoming
work

Run
appropriate
event handler

Server
HTTP
resposes

API
JSONp
responses

HTTP requests
to server

The program
counter is almost
always here,
waiting for work to
do

Buttons
and other
UI

Animation
timer

Not used in this
project

Server control flow

Queue of
incoming work

Run
appropriate

handlers

Database
responses

Browser
HTTP
requests

Database

API
HTTP
responses

SQL queries

HTTP requests
to API

The server
program counter is
almost always
here, waiting for
work to do

HTTP responses
to browser

Not
added
yet

Request and response

!  The server’s job is to get HTTP requests and produce
the appropriate HTTP response for each one.

!  It is called on two objects, request and response.
The response object is like a pre-addressed
envelope, addressed to the machine that made the
request.

(You are the
server, Netflix is
the browser, in
this metaphor.)

Our server

static file
GET request
URL with no

“?” in it

query
GET request
URL begins

with /query?,
followed by
key-value

pairs

upload
PUT request

returns
static file in

Http
response

returns a
text string,
possibly in

JSON
format, in

Http
response

returns a
short “OK!”
message in

Http
response

The response object

!  The static server puts the requested static file into
the response object, and sends it off

!  The dynamic query server computes a response,
often in JSON but also potentially in HTML, XML…,
puts that into the response object, and sends it off

!  Response object passed to function that will fill it in
!  Often putting together the response requires doing

an API or database request, so it won’t be done
immediately but in a callback

4

Closure

!  Example from “Eloquent Javascript”, Chapter 3.
function multiplier(factor) {

 return function inner (number) {
 return number * factor; };
 }

var twice = multiplier(2);
console.log(twice(5));
var thrice = multiplier(3);
console.log(thrice(5));

Closure

function multiplier(factor) {
 return function inner (number) {
 return number * factor; };
 }

!  Function that returns a function
!  factor is a local variable inside multiplier
!  inner remembers value of factor when it was

created

Closure

function multiplier(factor) {
 // return function inner (number) {

 return function (number) {
 return number * factor; };
 }

!  Anonymous function version
!  No reason inner function has to have a name; it will

never be called except here

Using closure to pass response object

!  From lecture Friday, how to answer query to add a
label:

function answer(query, response) {

 … get current labels from DB via SQL request-response cycle,
edit labels, send off UPDATE SQL command with callback…

 function updateCallback(err) {

 if (err) { sendCode(400,response,”not found"); }

 else { sendCode(200,response,

 "added label "+newLabel+ " to "+imageFile); } }

 } // close answer(query, response)

Using closure to pass response object

function answer(query, response) {

 … get current labels from DB via SQL request-response cycle,
edit labels, send off UPDATE SQL command with callback…

 function updateCallback(err) {

 if (err) { sendCode(400,response,”not found"); }

 else { sendCode(200,response,

 "added label "+newLabel+ " to "+imageFile); } }

 } // close answer(query, response)

!  updateCallback is defined inside answer, so it has
access to all the variables of answer, even though it
runs much later

Looping over image list

!  Creating a separate onclick function for every
image can be done neatly using closure and an
anonymous funciton

!  Once you query the database, you’ll get an array
containing the DB contents:

tableData = [{filename: "hula.jpg", labels: "Dance, Hula, Lei",
favorite: 0},

 {filename: "eagle.jpg", labels: "Eagle, Bird, Beak",
favorite: 0},

 {filename: "redwoods.jpg", labels: "Forest, Trees,
Redwoods", favorite: 0}]

5

Looping over image list

!  Loop over this list to insert a div containing an img
for each picture

!  We’d like to add an onclick function for each div (or
for the hamburger button we put on each div). But
we CANNOT do this (why?):

for (i=0; i<tableData.length; i++) {
…
 newDiv.onclick = showImageName("Photo ”+i+",

"+labels, i);
… }

Looping over image list

!  We also cannot do this!

newDiv.onclick = function () {
 showImageName("Photo "+i+", "+labels, i);

}

!  There is a separate onclick for each photo.
!  But there is only one variable i, and when the

onclick is called it will use whatever value i last
contained.

Looping over image list

!  But we can do this!
function createNewOnclick(index,labels) {

 return function() {
 showImageName("Photo "+index+", "+labels,
index); } }

newDiv.onclick = createNewOnclick(i, labels);
!  createNewOnclick returns a function.
!  That anonymous function is in the closure of

createNewOnclick, and remembers its local
variables

