ECS 18%9H
WEB PROGRAMMING

Announcements

“5/22

LOTS OF EXTENSIONS!

O Photobooth Part 1 due midnight THURSDAY 5/25
O A little extra credit if you hand it in tonight

o Part 2 due Tues 5/30

o Midterm 2 Friday 6/2

O My lab hours 4-5:30, 71 Kemper

o No new material in this lecture

Asynchronous programming

HTTP protocol

O Request-response pattern we see in different forms:
o Client makes request to server
o Callback function run when response comes back
O Interaction is always initiated by client
O In each case — which is client? which is server?
o0 Four major elements:
O specify request
O set up callback
O send off request

O callback function run when response gets back

_ HTTP
| Request Message

HTTP
Response Message
HTTP Clients
(Web Browser) HTTP over TCP/IP HTTP Server (Web Server)

O Requires this request-response pattern for loading
Web pages, AJAX interactions.

0 But we find the same thing in JSONp, DB operations

JSONp callback

AJAX request

script.src = "https://query.yahooapis.com/v1 /public/
yql2g=select * from weather.forecast where woeid
in (select woeid from geo.places(1) where
text=""+newPlace

+")&format=json&callback=callbackFunction”

document.body.appendChild(script);

function callbackFunction(data) {

var pgh = document.getElementByld("forecast");
pgh.textContent = JSON.stringify(data); }

var oReq = new XMLHttpRequest();

op=dumpDB”;
oReq.open("GET", url);
function respCallback () {
var dataArray = JSON.parse(this.responseText);
addPhotosToDOM(dataArray); }
oReq.onload(respCallback);
oReq.send();

Photo upload

DP operation

var oReq = new XMLHttpRequest();
var url = "http://138.68.25.50:2222";

var selectedFile =
document.getElementByld('fileSelector').files[0];

var formData = new FormData();
formData.append("userfile", selectedFile);
oReq.open("POST", url, true);

oReq.onload = function()
{ console.log(oReq.responseText) };

oReq.send(formData);

db.all("'SELECT * FROM photoLabels',dataCallback);
function dataCallback(err, tableData) {
if (err) {
console.log(err);
sendCode(400,reponse,”error reading DB” }
else {

sendCode(200,response,tableData); }

Why are DB ops asynchronous?

Why are DB ops asynchronous?

o Server should always be ready to respond as new
HTTP requests come in

O A database request may take a while; disk access
can be slow

o Server should not wait for a database operation to
finish before getting started on new requests

Why...

Why...

O ...are AJAX requests and APl requests, made from
the browser, asynchronous?

O ...are AJAX requests and APl requests from the
browser asynchronous?

O Browser should respond to user button pushes, etc,
immediately; should never get hung up waiting for
requests running over the internet

0 Especially when connections might be poor!

Bad example: DB request

Browser control flow

tableData =
db.all('SELECT * FROM photolLabels',dataCallback);

console.log(tableData);

Prints out:

tableData contains: Database { open: false, filename:
'photos.db’, mode: 65542 }

What's wrong?

Server API Buttons

HTTP JSONp and o'rher
resposes responses Ul fimer

The program
counter is almost ¢ ¢ ¢ & \

always here,

waiting for work to Queve of incoming
do —l work Not used in this
i project
Run
HTTP requests <
i appropriate
to server
event handler

Server control flow

Request and response

Th Browser | API Database

o enverl HTTP responses
program counter is
almost always requests| responses
here, waiting for ¢
work to do

Queve of
Not

incoming work D

added atabase
e i)

HTTP requests <~
to API Run

O The server’s job is to get HTTP requests and produce
the appropriate HTTP response for each one.

O It is called on two objects, request and response.
The response obiject is like a pre-addressed
envelope, addressed to the machine that made the
request.

(You are the
server, Netflix is
the browser, in

|
i s

this metaphor.)

The response object

appropriate SQL queries
HTTP responses pprop
€ handlers
to browser
Our server
I
[.- query
| == et il GET reques
| == GET request N 9 upload
L . with /query?,
URL with no foll d b PUT request
—_— @ in it —p| followed by | 3
key-value
pairs
returns a
text string, returns a
returns
static file in possibly in short “OKI”
Hittp JSON message in
response format, in Http
i Http response
response

O The static server puts the requested static file into
the response object, and sends it off

o The dynamic query server computes a response,
often in JSON but also potentially in HTML, XML...,
puts that into the response object, and sends it off

O Response object passed to function that will fill it in

o Often putting together the response requires doing
an APl or database request, so it won't be done
immediately but in a callback

Closure

Closure

o0 Example from “Eloquent Javascript”, Chapter 3.
function multiplier(factor) {

return function inner (number) {

return number * factor; };

}
var twice = multiplier(2);
console.log(twice(5));
var thrice = multiplier(3);

console.log(thrice(5));

function multiplier(factor) {
return function inner (number) {

return number * factor; };

0 Function that returns a function
o factor is a local variable inside multiplier

O inner remembers value of factor when it was
created

Closure

Using closure to pass response object

function multiplier(factor) {
// return function inner (number) {
return function (number) {

return number * factor; };

O Anonymous function version

o No reason inner function has to have a name; it will
never be called except here

0 From lecture Friday, how to answer query to add a
label:

function answer(query, response) {

... get current labels from DB via SQL request-response cycle,
edit labels, send off UPDATE SQL command with callback...

function updateCallback(err) {
if (err) { sendCode(400,response,”not found"); }
else { sendCode(200,response,
"added label "+newlLabelt " to "+imageFile); } }

} // close answer(query, response)

Using closure to pass response object

Looping over image list

function answer(query, response) {

... get current labels from DB via SQL request-response cycle,
edit labels, send off UPDATE SQL command with callback...

function updateCallback(err) {

if (err) { sendCode(400,response,’not found"); }

else { sendCode(200,response,

"added label "+newlabel+ " to "+imageFile); } }
} // close answer(query, response)
o0 updateCallback is defined inside answer, so it has

access to all the variables of answer, even though it
runs much later

o Creating a separate onclick function for every
image can be done neatly using closure and an
anonymous funciton

o Once you query the database, you'll get an array
containing the DB contents:

tableData = [{filename: "hula.jpg", labels: "Dance, Hula, Lei",
favorite: 0},
{filename: "eagle.jpg", labels: "Eagle, Bird, Beak",
favorite: 0},
{filename: "redwoods.jpg", labels: "Forest, Trees,
Redwoods", favorite: 0}]

Looping over image list

Looping over image list

O Loop over this list to insert a div containing an img
for each picture

o We'd like to add an onclick function for each div (or
for the hamburger button we put on each div). But
we CANNOT do this (why?):

for (i=0; i<tableData.length; i++) {

newDiv.onclick = showlmageName("Photo "+i+",
"+labels, i);

!

0 We also cannot do this!

newDiv.onclick = function () {

showlmageName("Photo "+i+", "+labels, i);

O There is a separate onclick for each photo.

O But there is only one variable i, and when the
onclick is called it will use whatever value i last
contained.

Looping over image list

O But we can do this!
function createNewOnclick(index,labels) {
return function() {

showlmageName("Photo "+index+", "+labels,
index); } }

newDiv.onclick = createNewOnclick(i, labels);
o createNewOnclick returns a function.

o That anonymous function is in the closure of
createNewOnclick, and remembers its local
variables

