
1

ECS 189
WEB PROGRAMMING

5/24

File-system security

!  There has been a good discussion of security on
Piazza

!  One simple thing: make your directory on the server
unreadable to your classmates (Alex and Loc
suggested this on Piazza as soon as we got these
accounts)

 chmod 700 .

 ….from your home directory.

Our servers have no security

!  Any browser can access any server
!  If your server is running, it is willing to hand out any

file from /public
!  This includes your photos.js, which contains some of

the code you wrote for this assignment
!  In general, browser code is public; even for a

(hopefully) very secure site like Bank of America,
you can see the source (HTML, CSS, Javascript) of
any Web page you download

Upload

!  Allowing users to upload files to a site introduces all
kinds of possible security problems

!  For instance, they could upload something that
overwrites an important file, either bringing down
the server or making it try to attack any browser
that uses it

Backups!

!  You’re doing a big project on a system with no
security and no backups!

!  Even if you’re not attacked, it is so easy to
accidentally delete an important file the night
before the project is due…

!  At least every day, copy your files to somewhere
safer (your laptop, a directory at school, a (private)
git repository)

Improving security for uploads

form.on('fileBegin', function (name, file){
 if ((file.type == "image/jpeg") | (file.type ==
"image/png")) {

 file.path = __dirname + '/public/' + file.name;
 localFilename = file.name;
 } else {
 console.log("cannot upload type "+file.type);
 }

2

Some other protections

!  Only accept alpha-numeric filenames with one dot
!  Put uploaded files in a different directory from any

code
!  Run uploaded files through virus protection before

storing permanently
!  Set maximum file upload size to prevent denial-of-

service attacks

Ethics

!  Is it ethical to tamper with a classmate’s project,
possibly ruining their grade, in order to teach them
a lesson about being careless with security?

!  What is a professional course of action when you
discover a security violation?

Private data

!  On a real photo sharing site, different users would
have different collections of photos, some of which
might be private

!  How come I see my photos when I go to Flickr, and
you see yours?

Private data

!  On a real photo sharing site, different users would
have different collections of photos, some of which
might be private

!  How come I see my photos when I go to Flickr, and
you see yours?

!  We need to log in!
!  Making users log in lets you:

! give them private data
! differentiate what they see (my photos, not all photos)
! maybe charge money!

Authentication on our site

!  Alex suggests this node module:

npm install basic-auth

!  Adds a (very simple kind of) login and password to
your app on the splash page

!  This will makes it harder for people to get to your
Upload button

!  Does a login prevent them from getting to the
Upload button?

Maybe!

!  If your main page is a separate html page (easiest!)
then they might know or guess its name and go
there directly, skipping the splash/login page

!  You could have your app send this second page, or
perhaps just modify the first page, in the reply to
an AJAX request

!  AJAX is more secure than public static files
!  Does preventing them from getting to your Upload

pages prevent them from uploading?

3

Not entirely

!  Server forgets about users, accepts any POST
request it gets

!  Hacker can still put together an HTTP request, type
POST, addressed to server, with a file in the body

server
POST
request

More secure login

!  Login to a secure site, eg. BofA, will
! use a more complicated login,
! encrypt traffic going back and forth, and
!  issue a session cookie to your browser.

!  Browser remembers the session cookie, and includes
it in future AJAX requests to BofA, until tab is closed.

But even simple login helps!

!  When they can get to your Upload button, it makes
it super-easy to create an evil POST request.

!  Can they just target their Upload button code to
send requests to your server?

But it gets harder!

!  When they can get to your Upload button, it makes
it super-easy to create such a POST request.

!  Can they just target their browser Upload button
code to send requests to your server?

!  Not really! Browsers only send AJAX requests to
their own servers.

Same Origin Policy

!  Mainstream browsers implement the Same Origin
Policy – AJAX requests can only go to the same
server the Web page came from.

!  So in general, if we want to use a 3rd party API, we
can’t access it directly from the browser. We need
to go through the server

Path to get data from API

 Client (browser) Server Google

 POST

JSON

Upload
Button
Function Upload

Handler

Browser
Callback

CCV API

CCV
Callback

JSON

 POST 1

2

3

4

5

4

Cross Site Scripting Attack

BofA
Celebrity
Makeovers

Your Browser

Without the Same
Origin Policy,
Javascript from
Celebrity
Makeovers could
access your BofA
account.

How would that work?

!  You log into BofA, or maybe some site that does not
have such good security (eg. no session cookies)

!  Then you open a new tab at Celebrity Makeovers
!  If there were no same-origin policy, CM’s Javascript

could try accessing BofA, all the time, just in case it
discovers that you are logged in.

!  When it gets lucky, it sends the hackers a big check.

Same Origin Policy

BofA
Celebrity
Makeovers

Your Browser
Encapsulate

communication
of each Web

page

But….???

!  How did we do that Weather App?
!  Weren’t we using an API to get the weather from

the browser?
!  We didn’t use a server in the middle to satisfy the

Same Origin Policy…?

JSONp

!  JSONp lets you get JSON from servers other than
your own.

!  Uses an exception to the Same Origin Policy – you
can use Javascript libraries on any Web page.

!  Yahoo Weather sets up a JSONP service to make its
weather data public.

Another classic

!  Allow users to access a database over the Web
!  For instance, let users get arbitrary data out of our

database
! Let them enter SQL commands, we run them on server,

send results back
! Terrible idea; why?

5

Protecting a database

!  You want only your users to access the database;
any whacko can get there by sending queries to
your server, and destroy data.

!  Attempt 2: Users enter search term in a text form,
sends it to server, and we put it into server
database for them
!  In server code, take user data and put it into a SELECT

command
! Terrible idea; why?

How to use arbitrary user input?

!  Rather than building a command string using
arbitrary user input, use the SQL PREPARE
command.

!  Takes input, checks it carefully and then pastes it
into the command.

!  This is an example of sanitization.
!  Almost always better to use a sanitization function

associated with your database or framework than
to write one yourself.

