
1

ECS 189
WEB PROGRAMMING

5/5

Announcements

!  Today:
! Server and node.js

!  Remainder of class organized around larger project
!  Do it in several steps
!  This week: first server, static Web pages

!  We write server and browser code
!  Database can be running on same machine as

server, but the interface to it is something like an API
call

Server

Broswer

Database Huffington Post

Server

!  The HTML, CSS an Javascript that run on the
browser are usually downloaded from a server,
over the internet.

!  A typical Web page generates queries that are
sent to the browser, similar to the API calls we made
in the the Weather App.

!  So the server has to generate JSON responses and
send them to the browser. These are called AJAX
queries (Asynchronous JavaScript and XML…but
we’ll use JSON instead of XML).

Our server

!  We’re using a cloud server from a company called
Digital Ocean

!  Our server has the elegant name:
 138.68.25.50

!  Getting it a real name would have cost us more
money….soon this name will be very familiar to
you.

Node.js

!  Our server is a Unix machine, like most (but not all)
servers

!  Our server code will be written using node.js.
!  Node.js is a way to run Javascript programs from

the Unix command line:

 node index.js

…runs the Javascript program in the file index.js.

2

Node.js

!  Node.js runs on several OS’s
!  It uses V8, Google’s Javascript compiler (the

compiling is going on under the hood, you
never see it, unlike C which you have to
compile yourself)

Life before Node.js

!  The classic Web browser runs on what was called
the LAMP stack:
 Linux, Apache (Web server), MongoDB (database),
PHP (scripting language).

!  Node.js kind of replaces Apache+PHP. A server
still needs an OS and, usually, a database.

Server modules in node.js

!  Node.js also includes a set of Javascript modules
that help us deal with problems like:

!  serving Web pages,
!  responding to AJAX queries,
!  querying APIs
!  and interacting with a database.

Modules

!  A module is a file containing Javascript code.
!  Objects, data and functions that programs in other

files can see are labeled external.
!  Modules provide another level of encapsulation and

data hiding (in addition to functions and objects).
!  They are something like C or C++ libraries.
!  Node.js has modules, browsers do not! (even though

they can use imported scripts such as JQuery or
Angular).

Ports

!  Many processes on the server are connecting to
other machines over the internet

!  To direct incoming traffic to the right process, each
process uses a unique port number

!  At the operating system/TCP level, a message
comes in off the internet, and the system uses the
port number to create an interrupt for the
appropriate process

!  We will each have our own permanent port number
so we don’t interfere with each other

Server code at a lower level

!  Mostly hidden by node.js
!  A Web server gets http requests and produces http

responses.
!  Http is a protocol for sending and receiving

messages over the internet.
!  Http requests and responses have:

 Header
 Body (sometimes)

3

HTTP request (browser->server)

GET /simple.html HTTP/1.1

Host: 45.55.29.158:8081

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:37.0) Gecko/
20100101 Firefox/37.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Cache-Control: max-age=0

Body is empty.

HTTP response (server->browser)

HTTP/1.1 200 OK

Content-Type: text/html

Date: Thu, 30 Apr 2015 15:55:44 GMT
Connection: keep-alive

Transfer-Encoding: chunked

Body contains html file.

Some popular response codes

!  200 - OK “here’s what you wanted”

!  301 – Moved Permanently “look over there”

!  304 – Not Modified “same as last time you asked
so I am not sending the body again”

!  404 – Not Found “what the heck?”

Accessing the server

ssh 138.68.25.50

!  You should be able to login using your Kerberos
account credentials

!  To get your port number, run:

 get-my-cs189h-port

…and it should type the port number you should use.

Simple Web server

 From Eloquent Javascript, Chapter 20

 var http = require('http');

!  Brings in the http module.
!  To keep the namespaces of modules distinct, all

objects and functions from http have to be prefaced
by “http.”

!  This is the same as object syntax

Handler function

function handler (request, response) {…

!  All node.js servers use a handler function, which is a
new kind of event handler – for incoming requests to
the server.

!  A node.js handler function takes two object arguments
!  The request object contains information about the http

request.
!  We use the response object to build our response.

4

Typical handler structure

 var url = request.url;

!  Get whatever data we need out of request object

Fill in the response header

 response.writeHead(200, {"Content-Type": "text/html"});

!  Builds an http response
!  Head contains return code 200 (“Here’s what you

wanted”)

Fill in the response body

 response.write("<h1>Hello!</h1>");
response.write("<p>You asked for <code>" + url +
"</code></p>");

!  The response object might contain HTML, Javascript,
CSS or JSON, depending on what was requested

!  In this case, we are constructing some HTML and
putting it in the body

Sending the response

response.end();

!  Calling response.end() tells node.js that we have
finished filling in the response object, and it is OK to
send the response back to the browser.

!  Remember: “ending is sending” for these http
responses.

createServer

var server = http.createServer(handler);

!  Calling function createServer from the http module
!  The function createServer creates a server object
!  It takes the handler function as input
!  The handler function will be called when the server

gets an http request
!  It’s like a callback function!

listen

server.listen(8082);

!  This starts the server and tells node.js, Unix and TCP
that requests to port 8082 should go to my server

!  I cannot emphasize too much that your server should
listen to YOUR PORT NUMBER, not mine

5

Running and using the server

!  On the server (Digital Ocean), run the simple server
program:
 node simple.js

!  From any browser, anywhere, request the URL
 http://138.68.25.50/anyPageNameYouLike

!  Should get response:
 Hello! You asked for anyPageNameYouLike

Summary

!  Typical overall handler structure
1.  Make a handler function

a)  In it, get data out of request object
b)  Then construct response header
c)  Then construct response body
d)  Call response.end() when response is completed

2.  Create a server object using the handler
3.  Start it listening to YOUR PORT

