ECS 189
WEB PROGRAMMING

o

Exams

o If you are satisfied with your scores on the two
midterms, you can skip the final
O As soon as your Photobooth and midterm are

graded, | can give you your course grade (so far)
so you can decide

o The material in this lecture will not be on the final. It
covers the “interesting part” of our project.

Cloud Vision APIl — the magic

How does it work?

Needle Nose Pliers

(H { (\ ’: Diagonal Pliers

o Sadly, it really is magic...or at least not well
understood!

O But we have a word for it...Convolutional Neural
Networks!

O References:
O “Computer eyesight gets a lot more accurate”, NY Times
o Stanford CS 231n
O Christopher Olah’s blog

o Take ECS 174!

Neural Networks

Artificial Neuron

75
©” neuron...

0 Program based on metaphor of how brains work
o Highly interconnected collection of neurons
O Input comes in on dendrites

o0 When input is “enough”, neuron “fires” and sends
signal through axon to other neurons
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0 Possibly many inputs : )
o Weights

o Continuous ¢ function




Neural Network

Image Labeling

input layer

hidden layer 1 hidden layer 2

0 Much bigger; billions of connections
o Different configurations

0 “Deep learning” -> many layers

CAT
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O Input is image pixels

o Output is words

Training

Weight adjustment — the chain rule!

O Large training set of image-label pairs
o Start with random weights
0 For each training image:

O Adjust weights at every node to move the activation of
the training label up and the other labels down

o Do this over and over again until cycling through the
whole training set does not change the weights any
more

O This takes a long, long time
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Weight adjustment — the chain rule!

Old idea

};

O = output of whole network Start at the output

end, work your way
— back taking

dO/dw, = dx;/dw, dO/d

few, Xa/dwy /dx, derivatives — back

dO/dx, = dx,/dx, dO/dx, propagation

0 McCulloch and Pitts, seminal paper, 1943

0 Rosenblatt, weights contain memory, 1958

O Minsky and Pappert, critique, 1969

o0 Rumelhart, Hinton and Willams, backprop, 1986




So why is it a big thing now?

o Computational power — we can get really big
networks to converge
o Use GPUs

O Do it at Google in a massive distributed parallel
environment (Tensorflow)

So why is it a big thing now?

o Computational power — we can get really big
networks to converge

0 Big data! We have enough training data to get
really big networks to converge

O Better organization of networks

o Convolutional neural network

Convolution
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0 Use a face-shaped pattern. Multiply pattern by
face at every point to get a score for pattern
position.

So why is it a big thing now?

o Computational power — we can get really big
networks to converge

0 Big data!l We have enough training data to get
really big networks to converge

Convolution

TN

o Convolution is the mathematical operation for
pattern matching

o Say we wanted to find a face in a 1D signal

Convolution
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O Use a face-shaped pattern. Multiply pattern by
face at every point to get a score for pattern
position.




Convolution

Convolution

O Best score a position where pattern and signal
match the best!
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O Best score a position where pattern and signal
match the best!

Convolution of original image

Patterns for images
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O Weights get multiplied by input x. So we will get
strong signals (o)) if weights form a pattern that
matches part of the image (eg. kitty eyes)

0 Feed all small sub-images to a neuron, and hope we
optimize weights so it makes an interesting max.

o Create hundreds or thousands of pattern neurons,
optimize each over all possible positions, look for
peak outputs

Convolutional Neural Network

Automatically generated features

Pooling Convolution Pooling Fully Fully Output Predictions.
+Rell Connected Connected
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o0 Image as input

o Convolution consider features of small areas
O Pooling layers select the strongest features

O Fully connected layers connect features to outputs

o Two sets of convolution features trained on two
different GPUs, feeding into the same fully
connected layer

o One side looks for dark-to-light, edges, gradients,
the other works on color and texture




Recognition in the browser

Big data for image labeling

*This network is running live in your browser

o Training is slow but recognition is pretty fast (we are
seeing seconds, including the round-trip to Google

o0 ImageNET training data
o Li Fei-Fei (Stanford) and Kai Li (Princeton)

O A category for every English noun

o Over a billion images

O Massive data collection using Mechanical Turk over
several years

o Key factor that has enabled us to train CNNs for this
task

Other big Deep NN applications

O Speech recognition
O Machine translation
O “The great Al awakening” — NY Times

o0 Text understanding and question answering
(grammar, meaning)




