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Proving Lower Bounds

The following examples relate to proving lower bounds for comparison-based algorithms, using both decision
trees and an adversary style proof. The first example considers finding duplicates in a sorted list of size n
(lower bound of n− 1), the second considers merging two sorted lists of size n (lower bound of 2n− 1), and
the last two relate to using a decision tree to lower bound the number of comparisons in finding a value in
a sorted array.

Example 1

Suppose we are given a sorted list of n numbers, X = x1 ≤ x2 ≤ . . . ≤ xn, and we are asked to check
whether or not there are any duplicates in the list. We are limited to algorithms which compare pairs of
list elements (with a procedure Compare(i, j) which returns <, > or =, depending on the values of xi and
xj). Assume the algorithm returns either distinct (if there are no duplicates) or ”i-th element equals j-th
element” if xi = xj . Note that if there are mulitple ties, any one can be reported. Prove a good lower bound
for the number of calls to Compare to solve this problem.

Solution:
Before selecting a proposed lower bound, and using an adversary argument to prove it, it is useful to

determine the lower bound on the simplest and most straightforward algorithm. The naive approach simply
walks the list and compares the current element to the next element, looking for duplicates. This takes
(n − 1) comparisons. Thus, we will try to prove (using an adversary argument) that (n − 1) is the best
(largest) lower bound possible. Our proof is as follows:

1. Assume there exists an algorithm A which runs in (n−2) comparisons which correctly finds duplicates
in an ordered list of size n.

2. Let X be a list such that xi = 2i for i = 1 to n. Note that all elements are unique.

3. Run algorithm A on input X. Since it only takes (n−2) comparisons, there is at least 1 element which
is not compared to its next element.

4. Find that element xi = 2i and set xi+1 = 2i. Remember that previously, xi+1 = 2(i + 1).

5. Rerun the algorithm. The algorithm will report no duplicates, as it did before, but it will be wrong.

Thus, there cannot exist any correct comparison-based algorithm that finds duplicates in a sorted list in less
than (n− 1) comparisons.

Example 2

Give a (2n − 1) lower bound on the number of comparisons to merge two sorted lists A1 < A2 < . . . < An

and B1 < B2 < . . . < Bn into a single sorted list.
Solution: It is useful to notice that with (2n − 1) comparisons, every element in the final merged list

of 2n elements has been compared to its next element (except the last element). Thus, our adversarial
argument is as follows:

1. Assume there exists an algorithm A which runs in (2n− 2) comparisons or less which correctly merges
two sorted lists of size n.

2. Let X be a list such that xi = 2i − 1 for i = 1 to n. Let Y be a list such that yi = 2i for i = 1 to n.
Note that all elements in both lists are unique.

3. Run algorithm A on input X and Y . Since it only takes (2n− 2) comparisons, there must be at least
1 element xi in the final merged list which has not been compared to both yi and yi+1.
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4. There are two cases. Either xi has not been compared to yi or it has not been compared to yi+1. We
will show the case where xi has not been compared to yi. The other case is similar. Find that element
xi = 2i− 1 and set xi = 2i and yi = 2i− 1. This does not change the order of either list.

5. Rerun the algorithm. Since yi and xi were not compared, and the order is now different, the algorithm
will sort the output in the same way as before, but now it will be wrong.

Thus, there cannot exist any correct comparison-based algorithm that merges two sorted lists of size n in
less than (2n− 1) comparisons.

Example 3

Suppose we are given a sorted list A1 < A2 < . . . < An, and we are asked to find a lower-bound on a
comparison-based algorithm for finding an arbitray value x in A. Assume that the algorithm outputs i if
x = Ai and zero otherwise. Consider the following decision tree:
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Thus, we see that every ”=” branch leads to a single leaf. Thus, the decision tree must have one node
which compares x to Ai for i = 1 to n. If not, we could easily come up with an adversarial-type argument
where the algorithm outputs an incorrect value. Since every internal node produces at most two non-leaf
nodes, there are at most 2k comparison nodes at level k. Since there are no comparisons performed on the
last level of the decision tree (there are only leaf nodes), we can sum the number of comparisons performed
at k levels as:

20 + 21 + 22 + . . . + 2k−1 =
k−1∑
i=0

2i (1)

=
1− 2k

1− 2
(2)

= 2k − 1 (3)

Furthermore, since there must be at least n comparison nodes in the tree:

2k − 1 ≥ n (4)

2k ≥ n + 1 (5)

log 2k ≥ log (n + 1) (6)
k ≥ log (n + 1) (7)

Thus, we have shown using a decision tree that the number of comparisons must be greater than or equal
to log (n + 1).

Example 4

Suppose we are given a sorted list X = x1 < x2 < . . . < xn. We want to search the list for a value y, and
output 0 if y is not present and i if y = xi otherwise. However, the only way we can access X is using a
procedure called Test(i, j, i, k, y), which, when 0 < i < j < k ≤ n, returns one of seven answers:
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1. y < xi

2. y = xi

3. xi < y < xj

4. y = xj

5. xj < y < xk

6. y = xk

7. y > xk

Use a decision tree to prove a lower bound on the number of calls to Test required to determine if y is in
X, and return an index if yes.

Solution: Consider the following decision tree.
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This tree is clearly not drawn with all of the branches, but every ”=” branch leads to a single leaf as
before. But in this case, each call to Test has three ”=” leaf nodes and 4 real branches. Since the decision
tree must have one node which compares x to Ai for i = 1 to n, there must be at least n/3 internal nodes
(each of which represents a call to Test). Since every internal node produces at most 4 non-leaf nodes, there
are at most 4k comparison nodes at level k. Since there are no comparisons performed on the last level of
the decision tree (there are only leaf nodes), we can sum the number of comparisons performed at k levels
as:

40 + 41 + 42 + . . . + 4k−1 =
k−1∑
i=0

4i (8)

=
1− 4k

1− 4
(9)

=
4k − 1

3
(10)

Furthermore, since there must be at least n/3 comparison nodes in the tree:

4k − 1
3

≥ n

3
(11)

4k − 1 ≥ n (12)

4k ≥ n + 1 (13)

log4 4k ≥ log4 (n + 1) (14)
k ≥ log4 (n + 1) (15)
k ≥ log(n + 1)/2 (16)

The last line follows from using the change of basis formula. Thus, we have shown using a decision tree,
that the number of comparisons must be greater than or equal to log (n + 1)/2.
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