
Discussion 5 Dr. Nina Amenta
Thursday, February 10 ECS 222A, Winter 2005

Appplications of Network Flow

Here are two sample problems which illustrate applications of network flow algorithms.

1. Given a computer network of n processors P1, P2, . . . , Pn, and m communication lines C1, C2, . . . , Cn,
where the i-th processor can test ti lines per day, we are asked to find a testing schedule or determine
that no schedule can test all lines in a single day. We are given a set of tuples (Pi, Cj) indicating which
processors can test which lines.

Solution:

Convert this computer network to a network flow graph by creating a source vertex s and adding edges
(s, Pi) of weight ti. Next add edges of unit weight (Pi, Ck), if the i-th processor can test the k-th
communication line. Last, add a sink t and edges unit weight (Ck, t) for each of the communication
lines. In order to find a testing schedule, simply run a max flow algorithm, and then BFS from t in
the residual graph and see how many communication lines are reachable from t. If all are reachable,
then see which processor is testing which line and that is the schedule. If not all lines are reachable,
then no schedule exists.

In terms of the running time analysis, the best max flow algorithm available to us is CLRS section 26.5,
the relabel-to-front max flow algorithm, which runs in O(V 3). Thus, our algorithm for determining
whether all lines can be tested in a day is O(V 3). Note: we assume all communications lines are
attached to at least one processor.

2. Now we are asked to find the minimum number of days needed to test all of the lines, without finding
a schedule.

Solution:

We augment the algorithm in the previous problem in the following manner:

1. Let k = 1.

2. Construct the graph as specified above with edge (s, Pi) having capacity k · ti.
3. Run the max flow algorithm. Upon termination, run a BFS from t to see if all lines are reachable

from t.

a. If all lines are reachable, find which processors can test which lines and return k.
4. If not all lines are reachable, then let k = k + 1 and repeat from step 2.

When our algorithm returns, we only know that Pi can test a given set of lines, but we don’t know
in which order. However, the order is irrelevant. As long as Pi tests only those particular lines, ti
per day, than the solution will be optimal. This algorithm is O(mV 3), because it would take at most
m days to test all m lines. However, we can improve this by doing a binary search and taking k as
{1, 2, 4, . . .}. Thus, we can improve the time to O(log dV 3), where d represents the number of days
needed to test all lines. Again, we are using the relabel-to-front O(V 3) algorithm as our underlying
means for determining max flow.

1


