Maximum Level in a Skip List

Say we construct a skip list by inserting \(n \) elements in arbitrary order, choosing the level of each element using the `randomLevel` function described in the paper (first setting `MaxLevel` to infinity, so that `newLevel` is always output).

The probability that a particular element reaches level at least \(k \) is \(p^k \), and the probability that *any* of the \(n \) elements reach level at least \(k \) is at most \(np^k \).

Let \(M \) be the maximum level of any element in the skip list. We want to bound \(E[M] \) given that \(\Pr[M \geq k] \leq np^k \). Using our usual technique of partitioning the possible experiments up using some group of mutually exclusive events, we have:

\[
E[M] = \sum_{k=0}^{\infty} k \Pr[M = k] \leq \sum_{k=0}^{\infty} k \Pr[M \geq k]
\]

Unfortunately using this in a totally straightforward way leads to a ridiculously high upper bound. We get:

\[
E[M] \leq \sum_{k=0}^{\infty} knp^k = n \sum_{k=0}^{\infty} kp^k
\]

This last sum seems simple enough to look up, and we find that it is \(p/(1-p)^2 \), for \(0 \leq p < 1 \), a constant. So we have shown that \(E[M] = O(n) \), not very helpful.

What went wrong? The low terms in the sum are huge over-estimates. For instance, if \(p = 1/2 \) we have

\[
\Pr[M \geq 1] \leq n/2
\]

which is true, but not a very good upper bound for a probability. When does it start getting to be a useful bound? Around when \(k = \lg n \):

\[
\Pr[M \geq \lg n] \leq n/n = 1
\]

To get a tighter bound, we break the sum into two parts (this is a handy technique! especially for Homework problem 5!). We’ll choose a number \(L \) which will be the boundary between small values of \(k \) and large values of \(k \). Then we’ll break the sum at \(L \):

\[
E[M] \leq \sum_{k=0}^{L-1} k \Pr[M = k] + \sum_{k=L}^{\infty} k \Pr[M = k]
\]

On the part with large \(k \), we’ll use the upper bound, and we’ll find some other way to handle the small \(k \).

So how do we choose \(L? \) When is \(k \) large enough? We’ll choose \(L \) so that

\[
kn^2 = O(1/k^2), \ \forall k \geq L
\]

Why \(1/k^2? \) Because another of the essential sums one ought to know is that

\[
\sum_{i=0}^{\infty} 1/i^2 \leq 2
\]
so that
\[\sum_{k=L}^{\infty} knp^k \leq \sum_{k=L}^{\infty} O(1/k^2) = O(1) \]

So what exactly is \(L \)? We want
\[Lnp^L \leq 1/L^2 \]
for large enough values of \(n \); so we want to choose \(L \), as a function of \(n \) and \(p \), so that
\[L^3p^L = o(1/n) \]

Solving directly for \(L \) is difficult. Instead, we just plug in some values and find one that works, preferably the smallest one possible that works. A good choice ends up being
\[L = 2 \lg_{1/p} n \]
(plug it in and check that \(Lnp^L = o(1/L^2) \) !).

Now we just need to figure out what to do with the small-\(k \) terms. Fortunately there are very few of these (\(O(\lg n) \), because of our choice of \(L \)) so we can make some generous over-estimates;
\[\sum_{k=0}^{L-1} kPr[M = k] \leq LPr[M = k] = L \sum_{k=0}^{L-1} Pr[M = k] = LPr[M < L] \leq L \]

So we end up with
\[E[M] = \sum_{k=0}^{L-1} kPr[M = k] + \sum_{k=L}^{\infty} kPr[M = k] \leq L + O = O(\lg n) \]