1. Permute by sorting, again.
Do problem 5.3-5.

2. No collisions.
Find the largest value of n that you can, such that if n items are stored independently in random locations in a hash table of size m, \[\Pr[\text{there are no collisions}] \geq 1/2 \]

3. Duplicate messages.
A series of n messages are broadcast on a communications channel. Your job is to determine if any of them are duplicates. With a very small probability $- 1/n^{10}$ - you may incorrectly report that two different messages are duplicates, but you should never miss a duplicate if it occurs.

The messages are far to long to store, but you have a flexible-size hash function $h(x, b)$ which takes a message x and number of bits b as input, and produces an integer in the range $0 \ldots 2^b - 1$. We’ll assume (unrealistically) that the integers produced by $h(x, b)$ are uniformly random and all independent of each other.

How few bits of memory can you use to solve this problem? Note that making a hash table of size m, with k-bit entries, counts as mk bits, even if most of the entries are empty.

4. Exponential backoff.
This problem is related to the idea of exponential backoff, which is part of the ethernet protocol.

We have a large number of computers sharing a communications channel, and n of them have a packet of data to send. Time is divided into intervals t_0, t_1, \ldots. Any one packet can be sent in a single time interval, but if two or more packets are sent during the same interval t_i the packets collide, and none of them is successfully transmitted. The computers can only detect whether their packet is successfully transmitted or not; they do not otherwise communicate with any of the other computers, and they do not know n or the total number of computers on the channel.

The computers use the following protocol. They all try to transmit at t_1; assuming $n > 1$ there will be a collision. We call this round zero. In round 1, each computer then chooses randomly whether to transmit during either t_2 or t_3. If it fails again to transmit, it continues to round 2. In general, if a computer fails at time t_i, $2^k \leq i < 2^{k+1}$ for some integer k, it picks a new time t_j at random, from the range $2^{k+1} \leq j < 2^{k+2}$, and tries again at t_j. The process continues until all of the n computers succeed in transmitting their packets.

Give the best upper bound you can on the number of rounds which will be required for every computer to transmit its message.