
Combinatorial and Computational Geometry
MSRI Publications
Volume 52, 2005

Binary Space Partitions:

Recent Developments

CSABA D. TÓTH

Abstract. A binary space partition tree is a data structure for the rep-
resentation of a set of objects in space. It found an increasing number of
applications over the last decades. In recent years, intensifying research
focused on its combinatorial properties, which affect directly the efficiency
of applications. Important advances were made on binary space partitions
for disjoint line segments in the plane and for axis-aligned objects in higher
dimensions. New research directions were also initiated on some realistic
polygonal scenes and on kinetic binary space partitions. This paper at-
tempts to give an overview of these results and reiterates some of the most
pressing open problems.

1. Introduction

The binary space partition tree is a geometric data structure obtained by a

recursive partitioning scheme, called binary space partition (for short, BSP) over

a set of input objects: The space is partitioned along a hyperplane into two

half-spaces, then either half-space is partitioned recursively until every subprob-

lem contains only a trivial fraction of the input objects. The concept of BSP

has emerged from the computer graphics community in the seventies. It was

originally designed to assist efficient hidden-surface removal algorithms for mov-

ing viewpoints, but it has later found widespread applications in many areas of

computational and combinatorial geometry.

In many of the applications, the bottle neck of the space complexity is the size

of the BSP tree they rely on. Combinatorial research focused on determining

the worst case complexity of BSPs for certain classes of inputs. Despite the

simplicity of the BSP algorithm, it is often challenging to determine the so-

called partition complexity even for simple object classes such as disjoint line

segments in the plane, or axis-aligned boxes in higher dimensions. Ideally, the

partition hyperplanes do not split the input objects, and the size of the BSP tree

is linear in terms of the input size. In many cases, however, it is inevitable that

529

530 CSABA D. TÓTH

input objects are also fragmented, and the size of the data structure becomes

superlinear.

This paper surveys results on the combinatorial properties of BSPs from the

last four-five years. Inevitably, we include less recent results as well because

early ideas and observations are often used, sometimes in an enhanced form,

to obtain new results. Before we move on to the latest developments, let us

define the binary space partition and the partition complexity, and recall a few

applications and early results.

Definitions. A binary space partition tree is a recursive partition scheme for

an input set of pairwise interior disjoint objects in R
d, d ∈ N. If the input

contains two full-dimensional objects or a lower-dimensional object, we partition

the space by a hyperplane h and recursively apply two binary space partitions

for the objects clipped in each of the two open half-spaces of h. If the input is

at most one full-dimensional object (and no lower-dimensional object), we stop.

The partition algorithm naturally corresponds to a binary tree: Every node

corresponds to the input of a recursive call of the BSP: The root corresponds to

the initial input set, the two children of a non-leaf node correspond to the inputs

of its two subproblems. The BSP tree data structure is based on this binary

tree: Every leaf stores at most one full-dimensional object which is the input

of the corresponding subproblem; and every non-leaf node stores the splitting

hyperplane and the (lower-dimensional) objects of the corresponding subproblem

that lie on the splitting hyperplane. As a convention, the non-leaf nodes store

only k-dimensional fragments of k-dimensional objects lying on the splitting

hyperplane in R
d, 0 ≤ k ≤ d. For example, if a splitting hyperplane h crosses

an input segment s then the point h ∩ s is never stored. Figure 1 depicts an

example for a recursive partitioning and corresponding BSP tree for four input

objects.

a

b
c

d a1

b1

c

d

`1

`2

`3

`4

`5

a2

b2

`1

`2 `3, d

`4 `5 a2

a1 b1 b2 c

∅

Figure 1. Three disjoint ellipses and a line segment (left), binary space partition

with five partition lines (middle), and the corresponding BSP tree (right).

The binary space partition algorithm also defines a convex space partition:

Every node of the BSP tree corresponds to a convex polytope, which is the

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 531

intersection of the halfspaces bounded by the splitting hyperplanes of its ances-

tors. The root corresponds to the space R
d. A splitting hyperplane stored at a

non-leaf node splits the corresponding convex polytope into the two polytopes

corresponding to the two child nodes. The polytope corresponding to a node is

also called the cell of the (sub)problem because it contains every input object of

the (sub)problem. Observe that the set of all leaves of a BSP tree correspond to

a convex partition of the space.

An important special BSP, called autopartition, is defined for at most (d−1)-

dimensional input objects in R
d. An autopartition is a BSP where every splitting

hyperplane contains an input object of the corresponding (sub)problem.

A BSP has two important parameters: Its size is the total number of fragments

of objects stored at the nodes of the BSP tree; its height is the height of the BSP

tree. The BSP in Figure 1 has size 6 and height 3. An easy way to compute

the size of the BSP is to sum the number of input objects and the number of

cuts, the events when a splitting hyperplane partitions (a fragment of) an input

object. If the BSP does not make “useless cuts”, that is, if every splitting plane

partitions the convex hull of the input objects, then the BSP size is an upper

bound on the number of non-leaf nodes of the BSP tree.

There are many BSPs for every input set depending on the choice of the

splitting hyperplane at each subproblem. The partition complexity of a set S of

objects is the size of the smallest BSP for S. The minimal size BSP does not

necessarily comes with minimal heights, though. The autopartition complexity of

a set S is the size of the smallest autopartition for S. Clearly, the autopartition

complexity is never smaller than the partition complexity.

The convention that objects lying in a partition hyperplane are not partitioned

further leads to somewhat counterintuitive phenomenon: A set of objects in R
d

with superlinear partition complexity will have linear partition complexity when

embedded into R
d+1 because a single splitting hyperplane contains them all. One

may define another binary partitioning scheme which would partition recursively

the fragments of objects lying in each splitting hyperplane. The minimal number

of fragments under such an alternative partition scheme may be much higher than

the partition complexity. In this survey, we focus on combinatorial properties of

the partition complexity.

1.1. Applications. The initial and most prominent applications, where the

BSP tree itself is stemming from, lie in computer graphics: BSPs support fast

hidden-surface removal [Schumacker et al. 1969; Fuchs et al. 1980; Murali 1998]

and ray tracing [Naylor and Thibault 1986] for moving viewpoints. Rendering

is used for visualizing spatial opaque surfaces on the screen. A common and

efficient rendering technique is the so-called painter’s method. It draws every

object sequentially according to the depth order or back-to-front order, starting

with the deepest object and proceeding with the objects closer to the viewer.

532 CSABA D. TÓTH

When all the objects have been drawn, every pixel represents the color of the

object closest to the viewpoint.

Figure 2. Objects may have cyclic overlaps.

Unfortunately, some sets of objects have cyclic overlaps, where no valid depth

order exists (Figure 2). A BSP partitions the input objects into fragments for

which the depth order always exists for every viewpoint. It is easy to extract

the depth order of the fragments by a simple traversal of the BSP tree. An

additional benefit of BSPs is that the depth order can easily be updated as the

viewpoint moves continuously: It is enough to swap the two children of a node of

the BSP tree when the viewpoint crosses the corresponding splitting hyperplane.

(Computing the depth order, if it exists, for a fixed viewpoint may be easier than

constructing a BSP, however; see [de Berg 1993].)

The first applications of BSPs were soon followed by many others, e.g., con-

structive solid geometry [Thibault and Naylor 1987; Naylor et al. 1990; Buchele

1999] and shadow generation [Chin and Feiner 1989; Batagelo and Jr. 1999]. The

BSP for the faces of a full dimensional polyhedral solid can represent the solid

and its boundary with Boolean set operations. This, in turn, can be used for

efficient real-time shadow generation by computing the union of shadow volumes

obtained from traversals of the BSP tree in depth order for each light source

position. BSPs were also used in surface simplification [Agarwal and Suri 1998;

Shaffer and Garland 2001; Pauly et al. 2002] for clustering sample points.

Other applications of BSP trees include range counting [Agarwal and Ma-

toušek 1992], point location [Arya et al. 2000; de Berg 2000], collision detection

[Ar et al. 2000; Ar et al. 2002], robotics [Ballieux 1993], graph drawing [Asano

et al. 2003], and network design [Mata and Mitchell 1995]. BSP trees gen-

eralize some of the most commonly used geometric search structures such as

quadtrees/octrees, Kd-trees, and BAR-trees [Duncan et al. 2001], each of which

has numerous applications on its own right.

Early research. Research on combinatorial properties of BSPs began with

two influential papers of Paterson and Yao [1990; 1992]. They considered BSPs

for disjoint (d − 1)-dimensional hyper-rectangles in R
d (including line segments

in the plane). Many of their initial observations (about free cuts, anchored seg-

ments, and round-robin algorithms) are key elements of the most recent partition

algorithms, as well.

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 533

Paterson and Yao [1990] gave a randomized and a deterministic algorithm

to construct a BSP of size O(n log n) and height O(log n) for n disjoint line

segments in the plane. The height bound is optimal apart from a constant

factor, but the size bound is not known to be tight. A lower bound construction,

where the partition complexity of n disjoint line segments is Ω(n log n/ log log n),

is discussed in Section 3.

They also proved that the partition complexity of n disjoint (d−1)-dimensional

simplices in R
d, d ≥ 3, is O(nd−1), which is best possible for d = 3 and tight for

autopartitions in every dimension [Paterson and Yao 1990]. In three-space, there

are n disjoint line segments, lying along a hyperbolic paraboloid, whose partition

complexity is Θ(n2). The same lower bound carries over to hyper-rectangles in

R
d with the same Θ(n2) partition complexity. The gap between the upper and

lower bounds in higher dimensions has resisted research efforts so far.

Open Problem. What is the partition complexity of n disjoint (d − 1)-dimen-

sional simplices in R
d, for d ≥ 4?

Every BSP computes a convex partition of the free space around the input ob-

jects. The size of the convex partition is the number of leaves of the BSP tree.

The partition complexity of (d−1)-dimensional simplices is, therefore, cannot be

smaller than the minimum convex partition of a polyhedron with n faces in R
d.

It would be tempting to derive lower bounds on the BSP size from the convex

partitioning, unfortunately, no super-quadratic lower bound is known for this

problem [Chazelle 1984] for any d ∈ N.

Open Problem. What is the size of a minimum convex partition of a polyhedron

with n faces in R
d, d > 3?

In this survey we focus on the worst case (maximum) partition complexity of a

set of objects of a certain type. Computation or approximation of the optimal

size BSP for specific instances seems to be an elusive open problem (see e.g.,

[Agarwal et al. 2000c]).

Open Problem. Is it NP-hard or is there a polynomial algorithm to compute

the partition complexity of n given disjoint line segments in the plane?

Open Problem. Is it APX-hard or is there a polynomial time approximation

scheme to compute the partition complexity of n given disjoint line segments in

the plane?

Road map. In Section 2, we continue with recalling earlier ideas and observa-

tions which proved to be omnipresent in later results on BSPs. This section can

be considered a short warm up course on the basics on binary space partitioning,

which is essential in understanding the sometimes intricate partition schemes

and lower bound constructions. Section 3 sketches the proof for two closely

related results on disjoint line segments in the plane: An Ω(n log n/ log log n)

lower bound construction and a constructive upper bound on segments with k

534 CSABA D. TÓTH

distinct orientations, k ∈ N. Section 4 gathers a series of results about BSPs for

axis-aligned input objects, where all splitting hyperplanes are also axis-aligned.

We conclude the paper with two short sections related to other fields of com-

putational geometry: Section 5 reviews results on realistic object classes which

sometimes allow for linear partition complexity. Section 6 deals with kinetic

BSPs for continuously moving input objects.

2. Preliminaries

Many of the resent results on BSPs are based on or are extending basic con-

cepts known for decades. In this section, we present the most important ideas

with references the their recent extensions or enhancements.

Free cuts. A hyperplane h that does not split any input object but partitions

the set of objects into smaller sets (i.e., at least two of int(h−), h, and int(h+)

intersect input objects), is called a free cut. A minimum size BSP should use

free cuts whenever they are available [Paterson and Yao 1990]. A BSP that uses

free cuts only is called perfect. De Berg, de Groot, and Overmars [de Berg et al.

1997a] designed an O(n2 log n) time algorithm to detect if a perfect BSP exists

for n disjoint lien segments in the plane.

Cutting along a (d − 1)-dimensional object whose (relative) boundary lies

on the boundary of the cell is clearly a free cut (Figure 3). In the plane, this

implies, for instance, that if segment s is cut already at points p and q, then the

subproblem containing the middle fragment pq ⊂ s can be partitioned along pq

without cutting any input segment. Therefore, if we track the cuts of a single

input segment through an optimal binary space partitioning, then only the two

endings (the portion between the segment endpoint and the first or last cut) can

be further fragmented. This observation leads to an O(n log n) upper bound on

the partition complexity of n disjoint line segments [Paterson and Yao 1990], but

it is a basic element in all BSP algorithms.

Free cuts along objects. Consider a (d − 1)-dimensional object s in R
d. If a

fragment ŝ of s is bounded by cuts (previous splitting planes), then a hyperplane

along ŝ is a free cut for the subproblem containing ŝ. As a consequence, we can

assume that whenever a splitting hyperplane cuts a fragment ŝ of s then ŝ is

adjacent to the (relative) boundary of s. If a splitting hyperplane h partitions

ŝ but does not partition the common (relative) boundary of s and ŝ ⊂ s (e.g.

in Figure 3), then this commmon boundary is entirely on one side of h and the

fragment of ŝ on the other side of h is bounded by cuts and so it is a free cut.

For each final fragment of s adjacent to the boundary of s, there is one such cut

on every level of the BSP tree. Therefore the partition complexity of n disjoint

(d− 1)-dimensional simplices in R
d is upper bounded by the product of the size

and the height of a BSP for their (d − 2)-dimensional boundary simplices. For

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 535

example, we obtain an O(n log n) size BSP for n disjoint line segments in the

plane from a 2n size and dlog 2ne height Kd-tree of the 2n segment endpoints.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

h1
h2 h3

sŝ

Figure 3. An input triangle s in R
3 is cut by three vertical splitting planes h1,

h2, and h3. The striped triangle fragment is a free cut for the cell bounded by

the three splitting planes.

Paterson and Yao [1990] showed that cutting along all input objects in a

random order and applying free cuts whenever possible results in an O(nd−1)

expected size BSP for n disjoint (d−1)-dimensional simplices in R
d, d ≥ 3. This

BSP, however, can have linear expected height in the worst case, e.g., if the input

is the face set of a convex polytope. In three-space, this gives a randomized BSP

of O(n2) size and O(n) height for n disjoint triangles.

We can construct deterministically a BSP of O(log2 n) height and O(n2 log2 n)

size: Project all triangle edges to the xy-plane, and cover them with O(n2) pair-

wise non-crossing segments. By [Paterson and Yao 1990], there is a O(n2 log(n2))

size and O(log(n2)) height BSP for these segments. The lifting of the planar

splitting lines to vertical splitting planes in R
3 along with all possible free cuts

gives a BSP for the triangles. Refining this idea, Agarwal et al. [2000c] designed

a BSP of size O(n2 log2 n) size and O(log n) height for n disjoint triangles; while

Agarwal, Erickson, and Guibas [Agarwal et al. 1998] reported a randomized BSP

of expected O(n2) size and O(log n) height.

Cycles. Assume that we are given disjoint (d − 1)-dimensional objects in Rd.

If the hyperplane spanned by any object is disjoint from all other objects, then

every hyperplane through an object is a free cut and we obtain a perfect BSP

of size n by partitioning along them in an arbitrary order. We can define a

binary relation between two objects a and b saying that a � b if and only if the

hyperplane through a splits b. A BSP of size n using free cuts only still exists

if � is an acyclic relation: No object is cut if we always split the space along a

minimum element with respect to �. Sets with large partition complexity ought

to have many cycles w.r.t. �. Figure 4 depicts examples of cycles in the plane

and in three space. Cycles are vital in the analysis of BSPs for disjoint line

segments in the plane.

536 CSABA D. TÓTH

Anchored segments. A line segment is anchored if one of its endpoints lies

on the boundary of the cell. An anchored segment has only a uni-directional

extension that might split other segments. Paterson and Yao [1992] found a small

BSP for axis-aligned anchored segments in the plane that cuts non-anchored

segments at most four times. Using this BSP as a subroutine inductively, they

obtain an O(n) size BSP for n disjoint axis-parallel line segments: If a segment

is partitioned into c pieces during a BSP for anchored segments, then c−2 pieces

are free-cuts in their proper subproblems and are not fragmented any further,

the remaining two pieces are anchored and are taken care of by the next call of

the subroutine for anchored segments. This idea was extended and turned out

to be extremely fruitful in a number of recent results [Tóth 2003b; Tóth 2003a]

Figure 4. A set of line segments with a free cut and two cycles, one of which

is an anchored cycle (left). Axis-aligned rectangles where � defines a complete

bipartite graph (right).

De Berg et al. [1997b] noticed a useful property of cycles of anchored segments.

Consider a cycle (a1, a2, . . . , ak) of anchored segments, where ai � ai+1 for i =

1, 2, . . . , k−1 and ak � a1. Assume, furthermore, that the first anchored segment

hit by the extension of ai is ai+1 for i = 1, 2, . . . k−1, and a1 for i = k (Figure 4).

A cycle cut for (a1, a2, . . . , ak) is a partition subroutine where we cut sequentially

along the segments ak, ak−1, . . . , a1 in this order. Note that only the first splitting

line can cut anchored segments. Indeed, ak−1 � ak, so the extension of ak−1 hits

ak. The split along ak−1 does not extend beyond ak, along which we have made

a previous cut. Similarly, partitions along ak−2, . . . , a2, a1 are all free cuts w.r.t.

anchored segments of the initial problem. This property of cycles of anchored

segments in the plane unfortunately does not generalize to higher dimensions.

One possible higher dimensional generalization of anchored segments was in-

troduced by Dumitrescu et al. [2004] in the context of BSPs for axis-aligned

k-flats in R
d. An axis-aligned k-flat b is called an `-stabber, 0 ≤ ` ≤ k, if two

opposite (k − `)-faces of b lie on the boundary of the convex hull. Tóth [2003a]

defined another generalization: A 1-stabber b is a shelf with respect to a cell C

if C \ b is simply connected. He showed that the partition complexity of shelves

is O(n log n) in R
3.

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 537

Round-robin partition. Researchers tried to construct small size BSPs by

computing, for each subproblem, a splitting plane that optimizes some objective

function [Paterson and Yao 1992; Nguyen 1996; Nguyen and Widmayer 1995].

Intuitively, an “optimal” cut should cut few objects and partition the input into

almost equal size subproblems. Local optimization rarely lead to near optimal

BSPs, one notable exception is the case of axis-parallel segments in R
d, d ≥ 3.

Paterson and Yao [1992] considered the product of the number of segments for

each axis-parallel direction as an objective function. They showed that locally

optimal axis-aligned cuts (i.e., cuts decreasing maximally this value) build up

to an O(nd/(d−1)) size and O(log n) height BSP, which is best possible. The

orientation of optimal axis-aligned cuts in recursive calls varies in an irregular

order.

A simple but efficient round-robin BSP scheme for axis-aligned objects in R
d

works in rounds: Each round partitions the space into 2d pieces in d recursive

steps along axis-aligned hyperplanes of all d orientations. The round-robin BSP

scheme for points in R
d is the well known Kd-tree. For axis-aligned line segments

in R
d, a round-robin BSP makes a cut recursively along the median hyperplanes

of the segment endpoints. This BSP has O(n(d−1)/d) size and O(log n) height,

which is best possible for n axis-aligned segments [Paterson and Yao 1992]. Re-

cently, round-robin schemes [Dumitrescu et al. 2004; Hershberger et al. 2004]

lead to non-trivial bounds on the axis-aligned partition complexity of (disjoint)

k-flats in R
d for certain values of k.

3. Line Segments in the Plane

The best known upper bound on the partition complexity of n disjoint line seg-

ments in the plane is O(n log n). Paterson and Yao [1990] found an astonishingly

simple randomized BSP of expected O(n log n) size. The trapezoid decomposi-

tion method of Preparata [1981] (see also [Preparata and Shamos 1985]) gives

a deterministic BSP of this size as well. It was widely believed that disjoint

segments in the plane have linear partition complexity, this was supported by

experiments and by linear upper bounds for certain input classes such as axis-

parallel segments [Paterson and Yao 1992], anchored segments, and segments of

similar length [de Berg et al. 1997b]. Tóth [2003c] gave a family of n disjoint line

segments for every n, n ∈ N, whose partition complexity is Θ(n log n/ log log n).

An extension of these ideas lead to an O(n log k) bound on the partition com-

plexity of n disjoint line segments with k distinct orientations.

Lower bound construction. We show how the idea of cycles over segments

in the plane can be developed into a lower bound construction whose partition

complexity is Θ(n log n/ log log n). For the sake of simplicity, we focus on au-

topartitions, where every cut is made along an input segment. We start with the

simple observation that a BSP cuts at least one segment of every cycle. If every

538 CSABA D. TÓTH

segment appears in a unique cycle of size 3, then this already implies that the

partition complexity of n segments is at least n + n/3. To guarantee a higher

rate of fragmentation we design a recursive construction on k levels: The con-

struction Si on level i, 1 < i ≤ k, consists of copies of the construction Si−1 of

level i − 1. On the lowest level, S0 consists of a single line segment.

We squeeze Si−1 into a long and skinny rectangle, and build congruent copies

of this deformed Si−1 into Si. Note that the partition complexity is invariant

under affine transformations. The copies of Si−1 are so skinny that their position

in Si can be described by disjoint line segments, which we call sticks. The lower

bound on the partition complexity depends on three elements: (a) If Si consists

of x copies of Si−1 arranged in cycles then we can guarantee that any BSP makes

at least Ω(x) cuts on sticks. (b) If a cut of a stick (that is, a cut through a copy of

Si−1) implies that Ω(|Si−1|) true segments of Si−1 are cut, then the arrangement

of sticks at level i actually guarantees Ω(n) cuts on the input segments. (c) Once

we make sure that cycles of sticks at distinct levels induce distinct cuts on each

input segment, then the entire construction gives a lower bound of Ω(kn) on the

partition complexity, where k is the number of levels. It remains to show how

to find a construction satisfying all three conditions with k = Ω(log n/ log log n)

levels.

Figure 5. A cycle (left) and two cycles composed of cycles enclosed in long and

skinny boxes (middle and right). A line spanned by segments in one rectangle

either pierces a cycle in another rectangle (middle) or not (right).

A splitting line ` intersecting a copy of Si−1 does not necessarily cut all the

true segments in Si−1. If ` cuts all sub-constructions Si−2 within Si−1, then it

destroys the cycle arrangement of the sticks in Si−1 (Figure 5, middle) and so

this cycle arrangement does not induce any cuts on segments of Si−1. Therefore

we assume that the sticks of Si−1 are arranged so that no line ` spanned by an

input segment in another copy of Si−1 destroys their cycle (Figure 5, right). If,

however, a line ` cuts only a fixed fraction ci−1, 0 < ci−1 < 1, of the sticks of

Si−1, then it cuts only
(
∏i

j=1 cj

)

· n true segments. Since we want
∏k

i=1 ci to

be a constant independent of k = Ω(log n/ log log n), a cut through Si−1 must

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 539

actually cut the vast majority of the sticks of Si−1, which requires an asymmetric

cyclic arrangement of sticks.

Consider an asymmetric cycle in Si with three sticks such that two sticks

correspond to i2 copies of Si−1 (lying in disjoint skinny rectangles along the same

segment), and the third stick corresponds to only one copy of Si−1 (Figure 6,

left). If every line ` cutting Si cuts through both heavy sticks, then ` cuts
∏k

i=1 ci =
∏k

i=1 2i2/(i2 + 1) = O(1) fraction of the true segments. Recall that s

cycle cut may split only one sticks in the cycle. This means that an acyclic cycle

could be partitioned efficiently by cutting the light stick only, and none of the

2i2 copies of Si−1 along the heavy sticks (Figure 6, left).

`1

`2

`1

`2

`3

Figure 6. An asymmetric cycle (left), an asymmetric cycle with a one-step

staircase structure on either side of the smallest rectangle (middle), and with a

four step staircase (right).

We can overcome this difficulty with one additional idea: We want that if

neither of the heavy sticks is cut by a line `, then the light stick should be cut

many times. Specifically, we want that any BSP of the stick arrangement at level

i either cuts a heavy stick once or it cuts the light stick i2 times. Both scenarios

incur the same number of cuts on sticks, and on true segments, too. We can

force the light stick to be cut many times by arranging i2 copies of Si−1 in a

staircase fashion on either side of the light stick. (Figure 6, middle and right).

Technically, we break each heavy stick into i2 distinct sticks in a staircase-like

structure as depicted in Figure 6, right).

Tóth [2003c] shows that both the autopartition and partition complexity of

this construction is Ω(n log n/ log log n). The partition complexity of n disjoint

line segments in the plane is, thus, O(n log n) and Ω(n log n/ log log n).

Open Problem. What is the partition complexity of n disjoint line segments

in the plane?

Convex cycles. The importance of cycles of anchored segments was already

noted by de Berg, de Groot, and Overmars [de Berg et al. 1997b]. The segments

of a cycle (a1, a2, . . . , ak), however, can be quite irregular: A cycle cut can parti-

tion a non-anchored segment into k fragments (Figure 4). Tóth [2003b] defined

a convex cycle, which is a cycle of anchored segments lying along sides of a con-

540 CSABA D. TÓTH

vex polygon (Figure 7). Cutting sequentially along segments of a convex cycle

partitions any non-anchored segment into at most four pieces. To make sure

that every set of segments in a cycle contains a subset forming a convex cycle,

we drop the condition that ak � a1 in the definition of convex cycles (Figure 7,

right).

b

b

b

a

a

ba
b

s

1

3

3

5

4

2 2

1

Figure 7. A convex cycle (a1, a2, a3) and a cycle (b1, b2, . . . , b5) that contains

a convex cycle (b1, b2, b3) with b3 6� b1.

Limited number of line directions. Paterson and Yao [1992] proved, us-

ing anchored segments, that the partition complexity of n disjoint axis-parallel

segments in the plane is at most 3n. This was further improved to 2n − 1 [Du-

mitrescu et al. 2004] (see Section 4). The proof techniques, however, do not

generalize for cases where the segments have three or more distinct orientations.

Tóth [2003b] proved recently that for any k, k ∈ N, the autopartition complex-

ity of n disjoint line segments with k distinct orientations is O(nk), while their

partition complexity is O(n log k). The latter bound is asymptotically tight for

k = O(1) and also for the lower bound construction described above, that is,

where n disjoint segments have k = 2O(log n/ log log n) distinct orientations.

The partitioning algorithm for a set S of disjoint segments works in phases:

Every phase i performs a BSP for a fixed set Ai of anchored segments such that

no segment of S is cut more than O(log k) times (respectively, O(k) times in

the case of autopartitions). At an odd phase 2i − 1, we let A2i−1 be the set

of lower anchored segments at the current subproblem, that is, all (fragments

of) segments whose lower endpoint is on the boundary of a cell. Similarly, at

an even phase 2i, A2i is the set of all upper anchored segments. The result

follows immediately, since if a segment s ∈ S is cut in phase i then it is split into

c log k fragments, c log k− 2 of which are free cuts in their subproblem and 2 are

anchored fragments. The two endings of s may be cut again O(log k) times in

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 541

phase i + 1 and i + 2 during a BSP for upper and lower anchored segments, but

s is no longer cut in later phases.

A phase i calls a BSP subroutine P for the set Ai in each cell. P (Ai) makes

two types of cuts: (1) A segment-cut splits a cell along a line ` spanned by a

segment s ∈ Ai. It is applied if ` does not cut any anchored segment in the

cell. (2) A cycle-cut partitions along a convex cycle of anchored segments (as

described in Section 2). Every cycle-cut is followed by a cleanup step, where we

apply the subroutine P for subsets Bi ⊂ Ai of those anchored segments of Ai

which are split by the cycle cut. One can ensure that Bi has at most half as many

distinct orientations as Ai in each resulting subcell (in case of autopartitions, Bi

has at least one fewer distinct orientations than Ai in each subcell).

For every phase, the segment-cut and cycle-cut steps can be assigned into

different levels according to recursive calls where subroutine P applied them.

Since the number of distinct orientations decreases by a factor of two in each

level, there are at most log k levels (at most k levels for autopartitions). One can

also ensure by carefully isolating the region in which a cycle-cut splits anchored

segments of Ai that every input segment is cut O(1) times in each level. This

implies that every segment is cut at most O(log k) times in total (O(k) times for

autopartitions).

4. Axis-aligned Binary Space Partitions

A k-dimensional object is axis-aligned, if each of its `-dimensional faces is

parallel to ` coordinate axes, 1 ≤ ` ≤ k. In an orthogonal coordinate system,

axis-aligned objects are also called orthogonal, rectilinear, or isothetic. Note

that BSPs are invariant under affine transformations of the Euclidean space,

and so the partition complexity of axis-aligned objects is independent of the

angles among the coordinate axes. BSPs for axis-aligned objects are important,

because in many applications input objects are axis-aligned by nature or are

modeled by their axis-aligned bounding boxes.

The simplest axis-aligned objects are the boxes, defined as a cross product
∏d

i=1[ai, bi] of d intervals in R
d. The extent dimensions of a box B are the

coordinates i where ai < bi, while in every non-extent dimension, ai = bi.

An axis-aligned k-flat is a box with k extent dimensions. An axis-parallel line

segment, for example, is a 1-flat.

Every partition algorithm in this section uses axis-aligned splitting hyper-

planes only, such BSPs are said to be axis-aligned. Note that every cell in an

axis-aligned BPS is an axis-aligned box. For most axis-aligned input classes,

the axis-aligned BSPs are best possible among all BSPs ignoring constant or

logarithmic factors, because they match the partition complexity known for the

class. In some cases, lower bounds known for axis-aligned BSPs are higher by a

constant or logarithmic factor than those for the general BSPs. Of course, it is

542 CSABA D. TÓTH

easy to construct instances where the smallest BSP and the smallest axis-aligned

BSP have significantly different sizes.

Segments and rectangles in the plane. After Paterson and Yao [1992]

showed that the partition complexity of n disjoint axis-parallel line segments in

the plane is O(n), it remained to determine the exact value of the coefficient

hidden in the asymptotic notation. A partition algorithm due to d’Amore and

Franciosa [1992], originally designed for axis-aligned boxes, always computes an

axis-aligned BSP of size at most 2n−1. Dumitrescu, Mitchell, and Sharir [2004]

almost matched this bound with a construction (Figure 8, middle) whose axis-

aligned partition complexity is 2n − o(n).

For disjoint axis-aligned rectangles, Berman, DasGupta, and Muthukrishnan

[Berman et al. 2002] showed that the partition complexity is at most 3n−1. Their

partition algorithm is a blend of previous algorithms [Paterson and Yao 1992;

d’Amore and Franciosa 1992], combined with a charging scheme. In [Dumitrescu

et al. 2004] a construction is given where the axis-aligned partition complexity

is at least 7
3n − o(n). The authors point out, however, that their construction

cannot grant a lower bound that would match 3n − 1, since it does have an

axis-aligned BSP of size 2.444n + o(n).

Open Problem. What is the coefficient of the linear term in the (axis-aligned)

partition complexity of disjoint axis-aligned boxes in the plane?

A tradeoff between size and height. Arya [2002] noticed that the height of a

linear size axis-aligned BSP for disjoint axis-parallel segments cannot always be

logarithmic. Examining the construction on Figure 8, left, he showed that there

is a tradeoff between the size and the height of axis-aligned BSP trees. If the

height of such a tree is h then its size is Ω(n log n/ log h). A more complicated,

but stronger formulation of his result says that the BSP-tree of height h must

have size Ω(nr) in the worst case where r ∈ N,
∑r

i=0

(

h
i

)

≤ n/8.

Figure 8. Arya’s construction (left), Dumitrescu’s construction with 2·3·3·4 = 72

disjoint axis-parallel line segments (middle), and the corresponding axis-aligned

tiling of size 72 + 33 + (3 + 1)2 (right).

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 543

On the two extremities, this implies that an axis-aligned BSP-tree of size

O(n) has height nΩ(1); and one of height O(log n) has size Ω(n log n). The set of

segments in Arya’s construction, however, has linear partition complexity: All

segments become anchored after a diagonal cut (dotted line on Figure 8, left).

No tradeoff is known so far for the size and height of general BSP trees.

Open Problem. Is there a tradeoff between the size and the height of the BSP

trees for disjoint line segments (with arbitrary orientations)?

k-flats in d-dimensions. Paterson and Yao [1992] proved that the axis-aligned

partition complexity of n disjoint line segments in R
d, d > 2, lies between

(n/d)d/(d−1) + n and d · (n/d)d/(d−1) + n. There has been no improvement on

the coefficients on the main terms so far. Their lower bound construction is a

cubic grid
∏d

i=1{1, 2, . . . , (n/d)1/(d−1)} where d lines of distinct orientation stab

each grid cell. Their upper bound can be obtained by a round-robin partition

algorithm applying median cuts in all d directions.

Dumitrescu, Mitchell, and Sharir obtained an O(nd/(d−k)) upper bound for

the partition complexity of n axis-aligned k-flats in R
d [Dumitrescu et al. 2004].

It is not difficult to see that a round-robin cutting scheme delivers this bound,

too: Let every round consist of d recursive cuts in all d directions such that every

splitting hyperplane cuts through the median of the vertex set of the fragments

clipped to the cell. The total number of fragments may increase by a factor of

2k in each round, because every (fragment of a) k-flat can be split along each

of its k extents. At the same time, the number of fragments in one subproblem

decreases by a factor of 2d−k. So there are at most (log2 n)/(d − k) rounds,

and the BSP size is O(n · nk/(d−k)). Dumitrescu et al. [2004], in fact, applied a

somewhat different partition scheme where all cuts for each hyperplane direction

are made simultaneously. They also give a matching lower bound of Ω(nd/(d−k))

for the case where k < d/2.

The formula Θ(nd/(d−k)) is no longer valid for disjoint objects if k ≥ d/2 (the

axis-aligned partition complexity is Θ(n5/3) for k = 2 and d = 4 [Dumitrescu

et al. 2004]). The reason for this is that disjointness plays no role if k < d/2,

but it is restrictive for k ≥ d/2. Indeed, if two objects whose extent dimensions

together do not contain all d dimensions intersect, then they have a common non-

extent dimension where their coordinates coincide. Any system of k-flats in R
d,

k < d/2, can be perturbed into a pairwise disjoint set by translating each object

independently by a small random vector. If the random vectors are sufficiently

small, then this perturbation does not decrease the partition complexity (every

BSP for the perturbed set translates into a BSP of less than or equal size for

the original input). Two flats whose extent dimensions contain all d dimensions

may not always be separated by an arbitrarily small perturbation. The simplest

examples are a set of axis-parallel segments in the plane and in R
3, respectively:

A small random perturbations removes all segment-segment intersection in three-

space, but intersections may prevail in the plane.

544 CSABA D. TÓTH

The disjointness requirement is more apparent for the following generalization

of free cut segments in higher dimensions: An axis-aligned box is a stabber in

dimension i if its extent contains the extent of the bounding box of the input in

dimension i. It is an M-stabber for a set M ⊆ {1, 2, . . . , d}, if it is a stabber in

every dimension i ∈ M ; we can also say that it is a k-stabber if k = |M |. An

M1-stabber and an M2-stabber intersect if M1 ∪ M2 = {1, 2, . . . , d}. Stabbers

were defined by Dumitrescu, Mitchell, and Sharir [Dumitrescu et al. 2004]. Later

Hershberger, Suri, and Tóth [Hershberger et al. 2004] gave an alternative defini-

tion saying that a box is k-stabber, if all its j-faces, j < k, lie on the boundary

of the bounding box.

The concept of stabbers is crucial in any axis-aligned BSP algorithm. Let us

mention just two of their useful properties: (i) A (d − 1)-stabber is a free-cut

in R
d. (ii) Apart from at most 2k fragments incident to the vertices of b, every

fragment of a k-flat b is a `-stabber for some 1 ≤ ` ≤ k. A set of disjoint stabbers

corresponds to a pairwise intersecting set system: Let us map every stabber b to

the set ϕ(b) ⊂ {1, 2, . . . , d} of dimensions in which b is not a stabber. {ϕ(b) : b} is

a pairwise intersecting set system; and vice versa: Given a pairwise intersecting

set system D on {1, 2, . . . , d}, there is a set of stabbers in R
d whose image under

ϕ is D.

Tilings. In every lower bound construction where the partition complexity is

high, the free space surrounding the input objects is also complex in the sense

that its smallest convex partition is often superlinear. Researchers expected

that if there is no space among the (convex) input objects (or, if the convex

partition of the free space has the same order of magnitude as the input), then

the partition complexity would be significantly smaller. A tiling in R
d is a set

of d-dimensional objects that partition the space. An axis-aligned tiling is a set

of full-dimensional axis-aligned boxes that partition the space.

Already in the plane, the worst case partition complexity of axis-aligned tilings

is smaller than that of disjoint boxes. Berman, DasGupta, and Muthukrishnan

[Berman et al. 2002] showed that every axis-aligned tiling of size n has an axis-

aligned BSP of size at most 2n (recall that the axis-aligned partition complexity

of disjoint rectangles is at least 7
3n − o(n) [Dumitrescu et al. 2004]). This is

asymptotically optimal, since a construction from [Dumitrescu et al. 2004], orig-

inally designed for disjoint line segments, can be converted to an axis-aligned

tiling. Their lower bound construction for axis-parallel line segments consists

of 2k(k + 1) bundles of k parallel lines (Figure 8, middle). These 2k3 + 2k2)

segments can be blown up to skinny axis-aligned boxes such that each bundle

fills an axis-aligned rectangle, and the free space between the rectangles can be

covered by k2 + (k + 1)2 = O(k2) interior-disjoint axis-aligned boxes (Figure 8,

right). A total of n = 2k3 + O(k2) boxes tile the plane, and their axis-aligned

BSP cannot be smaller than that of the original k3 segments we have started

with, that is, at least 4k3 − O(k2).

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 545

The difference in the partition complexity of disjoint and plane filling rectan-

gles was only the coefficient of the linear term. In three- and higher dimensions

the upper bounds on the partition complexity of tilings is smaller in exponent

than that of disjoint boxes. Hershberger and Suri [2003] observed that every

tiling where all (d−3)-dimensional faces of every tile lie on the convex hull has a

linear size axis-aligned BSP. (This is not true for disjoint axis-aligned boxes, in

general: In the known worst-case constructions, all (d − 3)-dimensional faces lie

on the convex hull.) This implies that it is enough to partition an axis-aligned

tiling until every cell is empty of (d−3)-dimensional faces, and then a linear size

BSP in each cell results in a BSP for the input tiling.

Hershberger, Suri, and Tóth [Hershberger et al. 2004] apply a round-robin

BSP for the (d − 3)-dimensional faces of an axis-aligned tiling in R
d. One can

show that the number of (d − 3)-faces in each subproblem decreases by a factor

of 23. Therefore the round-robin scheme terminates in 1
3 log n+O(1) rounds. In

each round of the round-robin scheme, every (d − 2)-face is split into at most

2d−2 fragments. In the course of 1
3 log n + O(1) rounds, every (d − 2)-face is

partitioned into (2d−2)
1

3
log n+O(1) = O(n(d−2)/3) fragments. Since the (d − 1)-

faces that become free-cut in their subproblem are not fragmented any further,

every (d − 1)-face and every tile is partitioned into O(n(d−2)/3) fragments, as

well. The round-robin scheme for (d − 3)-faces partitions the axis-aligned tiling

in R
d into n ·O(n(d+1)/3) = O(n(d+1)/3) fragments such that no (d− 3)-face lies

in the interior of a cell. By applying a linear size BSP for the tiling clipped in

each resulting cell, we obtain a BSP of size O(n(d+1)/3) for an axis-parallel tiling

with n tiles in R
d. By contrast, the best known upper bound on the partition

complexity of n disjoint full-dimensional boxes in R
d is O(nd/2) only.

In dimensions d = 3, the partition complexity of axis-aligned tilings of size

n is O(n4/3), which is tight by a construction of Hershberger and Suri [2003].

They start with the lower bound construction of Paterson and Yao [1992] for

axis-parallel line segments in three space, which consists of 3k2 axis-parallel line

segments such that three segments of distinct directions stab every unit cube

in [0, k] × [0, k] × [0, k] grid. Then they replace every segment by an air-tight

bundle of k axis-aligned skinny boxes, and fill the free space between the bundles

by 2k3 pairwise disjoint boxes. They obtain a tiling with n = 5k3 boxes. By

the argument of Paterson and Yao, each grid cell corresponds to a cut through

a bundle of k skinny boxes, which gives a total of k · k3 = Θ(n4/3) cuts of

tiles. Generalizing this idea and ideas of Dumitrescu et al. [2004], Hershberger,

Suri, and Tóth [Hershberger et al. 2004] gave a construction in d-dimensions for

which the axis-aligned partition complexity is Ω(nβ(d)), where limd→∞ β(d) =

(1+
√

5)/2 = 1.618. Apart from the staggering gap between the upper and lower

bounds for d ≥ 4, many problems remain open on BSPs of axis-aligned and of

general tilings.

546 CSABA D. TÓTH

Open Problem. What is the (axis-aligned) partition complexity of n space

filling axis-aligned boxes in R
d, d ≥ 4?

Open Problem. What is the partition complexity of n space filling simplices in

R
d, d ≥ 3?

Open Problem. What is the partition complexity of n tetrahedra that form the

triangulation of a convex polytope in d-space, d ≥ 3?

Fat rectangles. Another characteristics of the lower bound constructions for

n axis-aligned rectangles in R
3 is that the rectangles are long and skinny (they

are axis-parallel line segments fattened by a small ε > 0 in all extent dimen-

sions). It was reasonable to expect that disjoint fat objects have small partition

complexity. An axis-aligned k-flat is fat if the ratio of a largest inscribed and a

smallest circumscribed cubes1 in the k-dimensional space spanned by the object

is bounded by a constant.

De Berg [1995] proved that the partition complexity of full dimensional dis-

joint fat objects is linear in every dimension. This is true for any set of disjoint

fat objects even if they are not axis-aligned (Section 5 deals with further ex-

tensions of this result). On the other hand, n disjoint fat but not axis-aligned

rectangles may have Θ(n2) partition complexity [Paterson and Yao 1990].

Agarwal et al. [2000b; 1998] considered n disjoint axis-aligned fat 2-flats in R
3

and proved that their partition complexity is n·2O(
√

log n). Tóth [2003a] improved

this upper bound and gave an algorithm to compute a BSP of O(n log8 n) size

and O(log4 n) height. He also gave a lower bound construction for which the

axis-aligned partition complexity is Ω(n log n).

The main difficulty in dealing with a fat rectangle r in three-space is that the

fragments of r clipped to a cell of a subproblem is not necessarily fat anymore.

Every fragment, however, belongs to one of the following three types, each of

which has some useful properties that help our partitioning algorithm.

For an input rectangle r and a cell C, we say that the fragment r′ = r ∩ C is
• a corner if r′ is incident to a vertex of the original axis-parallel rectangle r,
• bridge if one extent of r′ is the same as the corresponding extent of C (r′ is a

1-stabber) and the other lies in the interior of the corresponding extent of C

(see Figure 9), or
• a shelf if one extent of r′ is the same as the corresponding extent of C and

the other is incident to one endpoint of the other extent of C (see Figure 9).

Every rectangle has only four vertices, therefore in every level of the BSP tree,

at most four sub-problems contain corners of an input rectangle r. This implies

that the number of cuts on corners of an input r is bounded by (four times) the

height of the BSP. A bridge fragment r′ of a fat rectangle r is not necessarily

1Traditionally, an object is called fat if the ratio of the radii of a circumscribed and an
inscribed ball is bounded by a constant. Our definition, in terms of cubes, is equivalent to the
standard definition (with a different constant threshold).

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 547

Figure 9. Shelves, bridges, and free-cuts clipped to a cell C in R
3.

fat. It still preserves part of the fatness of r, a property we call semi-fatness: If

r is α-fat then the extent of r′ in the interior of that of C is at most α times

longer than the extent containing the corresponding extent of C. The semi-

fatness allows us to separate bridges of different orientations (see subroutine P3

below). Finally, there is an O(n log n) size BSP for n disjoint shelves such that

it partitions every rectangle into at most O(log2 n) fragments.

We outline the main ideas to construct a O(log4 n) height BSP for disjoint

axis-aligned fat rectangles. The partition algorithm is composed of a four level

hierarchy of BSPs: We give a glimpse of each level and explain the lowest level

(a BSP for shelves) in detail below.

The main algorithm, P1, makes cuts recursively along the median xy-plane

of the vertices of the input rectangles. Since the number of rectangle vertices

in a cell is halved in each step, P1 terminates in O(log n) rounds. After every

median cut of P1, a cleanup step is applied in each cell C, which is a BSP for

the stabbers w.r.t. C and partitions every rectangle into O(log6 n) fragments. If

the cleanup step P2 makes a cut along a stabber r ∩C, then subsequent median

cuts of P1 cannot partition r ∩ C anymore. This ensures that the median cuts

performed by P1 may split any rectangle O(log n) times only.

The BSP P2 for a set S of stabbers makes cuts recursively along the median

xz-plane of the vertex set of S. Each median cut of P2 is followed by another

cleanup subroutine, P3, which in each cell separates the stabbers of S from other

stabbers (i.e., fragments that became stabbers due to the last median cut by

P2). Finally, P3 makes cuts along yz-planes, and calls a BSP P4 for all shelves

after every such step. We describe the BSP P4 for a set S of n shelves in a cell.

P4 has O(n log n) size and it partitions every rectangle into O(log n) fragments.

Consider a set S⊥ of n⊥ disjoint shelves in a cell C. Assume for simplicity

that they are all adjacent to the bottom side of C. The subroutine BSP for

S⊥ is a simple recursive algorithm: We split C by a horizontal plane h through

the highest upper edge of a shelf in S⊥, then we split the subcell below h along

the highest shelf (a free cut) and along the median shelf, and recursively call

this subroutine for each resulting subproblem (Figure 10 shows an example).

The algorithm terminates in log n⊥ rounds because the number of shelves in a

subproblem is halved in each round. None of the shelves is split, and we show that

548 CSABA D. TÓTH

every axis-parallel segment disjoint from these shelves is cut O(log n⊥) times: A

segment parallel to stabbing extent of the shelves is never cut, a vertical segment

is cut at most once in every round, which amounts to O(log n⊥) cuts. Lastly,

consider a segment s orthogonal to the shelves. In subproblems where s is a

stabbing segment, it lies above the highest shelf and so it cannot be cut at all.

In a subproblem where an endpoint of s lies in the interior of a cell, s be cut by

the splitting planes along the median shelf, which totals to at most 2 log n⊥ cuts

during the entire subroutine.

Figure 10. First two rounds of the BSP for shelves.

This was a BSP for shelves along the one side of a cell C. We still need to

integrate six BSPs for each of the six sides of C: If we näıvely call the subroutine

six times sequentially for the subproblems and for each side then the number of

cuts on axis-parallel segments might be (O(log n))6. We use, instead, the concept

of overlay of BSPs to keep the number of cuts on every segment O(log n). We

compute independently six BSPs for the shelves adjacent to each side, then we

“overlay” them one after another: A cut along a splitting plane made in one BSP

may incur splits in several cells resulting from previous BSPs. The combination

is still a valid BSP because every subproblem is split by a hyperplane. The

number of cuts on each segment is the sum of the cuts made by each of the six

BSPs rather than their product. The overlay of BSPs is a key concept to keep

the number of cuts low throughout this algorithm.

In general we would like know the partition complexity of n disjoint axis-

aligned fat k-flats in R
d, 1 < k < d. It is easy to show a lower bound of

Ω(n(d−k+1)/(d−k)). Indeed, consider a worst case construction for n axis-parallel

line segments in R
d−k+1, whose partition complexity is Ω(n(d−k+1)/(d−k)) by

Paterson and Yao [1992]. Embed it into a (d−k+1)-dimensional affine subspace

H of R
d and expand it to a k-dimensional square orthogonally to H. We obtain

n pairwise disjoint k-dimensional squares in R
d. The size of any BSP for this

set is Ω(n(d−k+1)/(d−k)). We expect that this bound can be attained apart from

a polylogarithmic factor, that is, out of the k extents of a k-dimensional fat

rectangle, k − 1 extents are essentially redundant with respect to the partition

complexity.

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 549

Open Problem. What is the (axis-aligned) partition complexity of n disjoint

fat axis-aligned k-flats in R
d, 1 < k < d?

5. From Fatness to Guardable Scenes

The worst case constructions for the partition complexity of general and axis-

aligned disjoint objects in 3-space use long and skinny input objects. This obser-

vation suggests that disjoint fat objects must have small partition complexity. A

full dimensional object is fat if the ratio of an circumscribed and inscribed ball

is bounded by a constant. Fat objects are often easier to handle. Among other

things, the union of fat objects have small combinatorial complexity in many

cases [Efrat and Sharir 2000; Pach and Tardos 2002; Pach et al. 2003]. A result

that every set of disjoint fat objects has linear partition complexity [de Berg

1995] initiated a flurry of work on extensions defining new object classes which

also have linear partition complexity by analogous arguments.

Fat full dimensional objects De Berg, de Groot, and Overmars [1997b] have

proved that the partition complexity of n disjoint convex fat objects in the plane

is O(n). De Berg [1995] has later found an elegant proof that establishes linear

partition complexity for disjoint full dimensional fat polyhedra with constant

number of vertices (e.g., fat tetrahedra) in R
d, d ∈ N, as well. His partition

algorithm generates the BSP tree in O(n log n) time for any d ∈ N, where the

constant of proportionality depends on the dimension. We briefly describe his

method below.

Consider an orthogonal coordinate system and then compute the axis-aligned

bounding box of every fat object. Generate a BSP for the set V of vertices of

all bounding boxes by repeating one of the following two steps starting with a

bounding cube C of V : (i) Partition the cubic cell C into 2d congruent cubes if

at least two sub-cubes have non-empty intersection with V . (ii) Otherwise every

point of V ∩C lies in one of the subcubes C ′. In this case, partition C along the

sides of the bounding cube of (V ∩C)∪c′ and (subsets of) where c′ is the common

vertex of C and C ′. Every subproblem that still contains a vertex of V is a cube

(allowing recursion). The subcells of the complement of the bounding box of

(V ∩C)∪ c′ in C are not necessarily fat but they can be expressed as the union

of O(1) cubes. Every cell of the resulting partition is empty of bounding box

vertices of the fat input objects. This implies that every resulting cell intersects

only a constant number of input objects. In each subproblem, one can complete

the BSP with a constant number of cuts if every fat object is either convex or

polyhedral with constant combinatorial complexity.

Note that the argument above used only that the input objects are fat, and

that they are pairwise disjoint. The extensions of disjoint fat scenes define prop-

erties of the whole input scene rather than properties of individual objects.

550 CSABA D. TÓTH

Relaxations. De Berg [2000] noticed that the above argument goes through

verbatim if, instead of disjoint fat objects, he requires a much weaker property:

unclutteredness. A set of objects is uncluttered if every axis-aligned cube inter-

secting more than a constant number of input objects contains a vertex of the

bounding box of an input object. It is easy to see that every set of disjoint fat

objects is uncluttered. The converse is false and so the class of uncluttered sets

is strictly larger than that of fat objects.

De Berg et al. [2003] further explored possible relaxations of fatness and

unclutteredness that still grants linear partition complexity. A set of n objects

is guardable if there are O(n) guard points such that every axis-aligned box that

intersects more than a constant number of objects must contain a guard point.

Every uncluttered set is guardable with the obvious choice for guard points being

the bounding box vertices. On the other hand, there are guardable sets that are

cluttered (Figure 11, right). Unlike fatness and unclutteredness [de Berg et al.

2002], however, there is no polynomial time algorithm known to decide if a set of

objects is guardable or not, let alone finding a guard points for a given guardable

set [de Berg et al. 2003].

uncluttered

disjoint fat

guardable

SCC

∪

∪

∪

Figure 11. The relations between the classes of polygonal scenes (left), and a

guardable but cluttered set of boxes (right).

Another property likely to imply low partition complexity is the small simple-

cover complexity (SSC), defined originally by Mitchell, Mount, and Suri [Mitchell

et al. 1997]. We cite the definition from [de Berg et al. 2002]: A set of n objects

has SSC, if their convex hull can be covered by O(n) balls such that the number

of objects intersecting each ball is bounded by a small constant. De Berg et

al. [2003] proved that in the plane a set of objects has SCC if and only if it is

guardable. In higher dimensions, however, SCC is a strictly broader property

than guardability. It is not known if there is a small size BSP for an SCC set.

Open Problem. What is the partition complexity of a set of objects with small

simple-cover complexity in R
d, d ≥ 3?

Tobola and Nechvile [2003] extended the definition of unclutteredness to sets of

axis-aligned objects where the neighborhood of every object is uncluttered after

a linear transformation. A set S of axis-aligned objects is locally uncluttered if

for every object s ∈ S the fragments of objects clipped in a neighborhood N(s)

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 551

of s are uncluttered after a linear transformation Ts. The neighborhood N(s) is

the axis-aligned box obtained from s by fattening each extent with a multiple

of the longest extent of s. Tobola and Nechvile [2003] show that every locally

uncluttered set of n objects in R
d has an O(n) size axis-aligned BSP.

6. Kinetic Binary Space Partitions

The first motivation for binary space partitions was efficient hidden-surface

removal from a moving viewpoint. The input objects of the BSP were, however,

assumed to be static. Recent research on BSPs for moving objects was set in

the model of kinetic data structures (KDS) of [Basch et al. 1999]. In this model,

objects move continuously along a given trajectory (flight plan), typically along

a line or a low degree algebraic curve. The splitting hyperplanes are defined

by faces of the input objects, and so they move continuously, too. The BSP is

updated only at discrete events, though, when the combinatorial structure of the

BSP changes.

In the KDS paradigm, the goal is to maintain at all times a BSP whose size

and height is below a reasonable threshold, which is usually close to the partition

complexity available for static input. Efficiency of the algorithms are measured

by additional parameters: the total space required during the algorithm, total

time, which is broken down into the total number of events and the maximum

update time for an event.

First Agarwal et al. [2000c] studied the BSP in the KDS setting. They

consider n moving line segments in the plane such that the trajectory of every

segment endpoint is a constant degree polynomial and the segments are pairwise

disjoint at all times. They design a randomized algorithm to maintain a BSP of

expected size O(n log n) in O(n log n) space, the number of events is O(n2) and

each event requires an expected O(log n) update time.

Instead of adapting a previously known static BSP algorithm [Paterson and

Yao 1990] to KDS paradigm, they start out from a randomized incremental BSP,

which is an adaptation of the vertical (trapezoid) decomposition of Mulmuley

[1990] and Seidel [1991]. They fix a random permutation of the segments, which

is the only random choice in the algorithm. In their BSP, every splitting line

is either vertical or a free cut (i.e., lies along an input segment); they call such

BSPs cylindrical. By restricting the possible splitting planes, they reduce the

number of possible event types: In fact, the only possible combinatorial event

is that a segment endpoint starts or stops crossing a vertical splitting line. A

careful analysis of the effects of these events on the BSP tree establishes the

bounds on the update time and the total space requirement.

All known kinetic BSPs are based on vertical decomposition. This choice keeps

the types of the possible combinatorial events under control, but the number of

events can be suboptimal. If the x coordinates of every two segment endpoints

are swapped during the motion, then the number of events can be Θ(n2) for any

552 CSABA D. TÓTH

cylindric kinetic BSP. For arbitrary kinetic BSPs, no such lower bound is known.

Agarwal et al. [2000a] established lower bounds on the combinatorial changes

every kinetic BSP has to go through: They give a set P of n points in the plane

all moving along axis-parallel lines with constant velocity such that any kinetic

BSP for P experiences Ω(n3/2) combinatorial changes.

Open Problem. How many combinatorial changes occur in the kinetic BSP of

n points moving with constant velocity in the plane?

Agarwal, Erickson, and Guibas [Agarwal et al. 1998] adapted the cylindrical

BSP method to potentially intersecting line segments. They maintain a BSP of

size O(n log n + k) and height O(log n) in total time O(n log2 n + k log n), all in

expectation, where k is the number of intersecting segment pairs. They apply

this algorithm to derive a kinetic BSP for n disjoint triangles in R
3, for which

they maintain a randomized BSP of expected O(n2) size and O(log n) height in

O(n2 log n) total time.

De Berg, Comba, and Guibas [de Berg et al. 2001] give a deterministic kinetic

BSP for disjoint segments in the plane. Their algorithm is based on a static BSP

algorithm due to Paterson and Yao [1990] using segment trees. They maintain

a BSP of size O(n log n) and height O(log2 n). The segment tree changes every

time when the x-coordinates of two segment endpoints swap. So if every endpoint

moves along a constant-degree polynomial trajectory, then the number of events

is O(n2), each requiring O(log2 n) update time. The average update time is

O(log n), though, similarly to the randomized algorithm of [Agarwal et al. 2000c].

Open Problem. Is there a kinetic BSP of size O(npolylog n) and height

O(polylog n) with o(n2) events for n disjoint line segments whose endpoints are

moving along straight line trajectories?

Acknowledgments

I thank the volume editors, Eli Goodman, János Pach, and Emo Welzl, for

their encouragement to compile this survey paper. I am also indebted to the

anonymous referees whose critical comments helped tremendously to improve

the presentation of this paper.

Work on this survey paper was done while at the Department of Computer

Science, University of California at Santa Barbara.

References

[Agarwal and Matoušek 1992] P. K. Agarwal and J. Matoušek, “On range searching
with semialgebraic sets”, pp. 1–13 in Mathematical foundations of computer science
(Prague, 1992), Lecture Notes in Comput. Sci. 629, Springer, Berlin, 1992.

[Agarwal and Suri 1998] P. K. Agarwal and S. Suri, “Surface approximation and
geometric partitions”, SIAM J. Comput. 27:4 (1998), 1016–1035.

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 553

[Agarwal et al. 1998] P. K. Agarwal, J. Erickson, and L. J. Guibas, “Kinetic bi-
nary space partitions for intersecting segments and disjoint triangles (extended ab-
stract)”, pp. 107–116 in Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (San Francisco, 1998), ACM, New York, 1998.

[Agarwal et al. 2000a] P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J.
Hershberger, “Lower bounds for kinetic planar subdivisions”, Discrete Comput.
Geom. 24:4 (2000), 721–733.

[Agarwal et al. 2000b] P. K. Agarwal, E. F. Grove, T. M. Murali, and J. S. Vitter,
“Binary space partitions for fat rectangles”, SIAM J. Comput. 29:5 (2000), 1422–
1448.

[Agarwal et al. 2000c] P. K. Agarwal, L. J. Guibas, T. M. Murali, and J. S. Vitter,
“Cylindrical static and kinetic binary space partitions”, Comput. Geom. 16:2 (2000),
103–127.

[Ar et al. 2000] S. Ar, B. Chazelle, and A. Tal, “Self-customized BSP trees for collision
detection”, Comput. Geom. Theory Appl. 15:1-3 (2000), 91–102.

[Ar et al. 2002] S. Ar, G. Montag, and A. Tal, “Deferred, self-organizing BSP trees”,
Comput. Graph. Forum 21:3 (2002), 269–278.

[Arya 2002] S. Arya, “Binary space partitions for axis-parallel line segments: size-height
tradeoffs”, Inform. Process. Lett. 84:4 (2002), 201–206.

[Arya et al. 2000] S. Arya, T. Malamatos, and D. M. Mount, “Nearly optimal expected-
case planar point location”, pp. 208–218 in 41st Annual Symposium on Foundations
of Computer Science (Redondo Beach, CA, 2000), IEEE Comput. Soc. Press, Los
Alamitos, CA, 2000.

[Asano et al. 2003] T. Asano, M. de Berg, O. Cheong, L. J. Guibas, J. Snoeyink, and
H. Tamaki, “Spanning trees crossing few barriers”, Discrete Comput. Geom. 30:4
(2003), 591–606.

[Ballieux 1993] C. Ballieux, “Motion planning using binary space partitions”, Tech.
Rep. Inf/src/93-25, Utrecht University, 1993.

[Basch et al. 1999] J. Basch, L. J. Guibas, and J. Hershberger, “Data structures for
mobile data”, J. Algorithms 31:1 (1999), 1–28.

[Batagelo and Jr. 1999] H. C. Batagelo and I. C. Jr., “Real-time shadow generation
using BSP trees and stencil buffers”, pp. 93–102 in Proc. 12th Brazilian Sympos.
Comp. Graph. and Image Processing (Campinas, SP), edited by J. Stolfi and C. L.
Tozzi, IEEE, Los Alamitos, CA, 1999.

[de Berg 1993] M. de Berg, Ray shooting, depth orders and hidden surface removal,
Lecture notes in computer science 703, Springer, Berlin, 1993.

[de Berg 1995] M. de Berg, “Linear size binary space partitions for fat objects”, pp.
252–263 in Algorithms—ESA ’95 (Corfu, 1995), Lecture Notes in Comput. Sci. 979,
Springer, Berlin, 1995.

[de Berg 2000] M. de Berg, “Linear size binary space partitions for uncluttered scenes”,
Algorithmica 28:3 (2000), 353–366.

[de Berg et al. 1997a] M. de Berg, M. M. de Groot, and M. H. Overmars, “Perfect
binary space partitions”, Comput. Geom. 7:1-2 (1997), 81–91.

554 CSABA D. TÓTH

[de Berg et al. 1997b] M. de Berg, M. de Groot, and M. Overmars, “New results on
binary space partitions in the plane”, Comput. Geom. 8:6 (1997), 317–333.

[de Berg et al. 2001] M. de Berg, J. Comba, and L. J. Guibas, “A segment-tree
based kinetic BSP”, pp. 134–140 in Proc. 17th ACM Sympos. on Comput. Geom.
(Somerville, MA, 2001), ACM Press, 2001.

[de Berg et al. 2002] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels,
“Realistic input models for geometric algorithms”, Algorithmica 34:1 (2002), 81–97.

[de Berg et al. 2003] M. de Berg, H. David, M. J. Katz, M. Overmars, A. F. van der
Stappen, and J. Vleugels, “Guarding scenes against invasive hypercubes”, Comput.
Geom. 26:2 (2003), 99–117.

[Berman et al. 2002] P. Berman, B. Dasgupta, and S. Muthukrishnan, “Exact size
of binary space partitionings and improved rectangle tiling algorithms”, SIAM J.
Discrete Math. 15:2 (2002), 252–267.

[Buchele 1999] S. F. Buchele, Three-dimensional binary space partitioning tree and con-
structive solid geometry tree construction from algebraic boundary representations,
Ph.D. thesis, University of Texas, Austin, 1999.

[Chazelle 1984] B. Chazelle, “Convex partitions of polyhedra: a lower bound and worst-
case optimal algorithm”, SIAM J. Comput. 13:3 (1984), 488–507.

[Chin and Feiner 1989] N. Chin and S. Feiner, “Near real-time shadow generation using
BSP trees”, Computer Graphics 23:3 (1989), 99–106.

[d’Amore and Franciosa 1992] F. d’Amore and P. G. Franciosa, “On the optimal binary
plane partition for sets of isothetic rectangles”, Inform. Process. Lett. 44:5 (1992),
255–259.

[Dumitrescu et al. 2004] A. Dumitrescu, J. S. B. Mitchell, and M. Sharir, “Binary space
partitions for axis-parallel segments, rectangles, and hyperrectangles”, Discrete
Comput. Geom. 31:2 (2004), 207–227.

[Duncan et al. 2001] C. A. Duncan, M. T. Goodrich, and S. Kobourov, “Balanced
aspect ratio trees: combining the advantages of k-d trees and octrees”, J. Algorithms
38:1 (2001), 303–333.

[Efrat and Sharir 2000] A. Efrat and M. Sharir, “On the complexity of the union of
fat convex objects in the plane”, Discrete Comput. Geom. 23:2 (2000), 171–189.

[Fuchs et al. 1980] H. Fuchs, Z. M. Kedem, and B. Naylor, “On visible surface
generation by a priori tree structures”, Comput. Graph. 14:3 (1980), 124–133.

[Hershberger and Suri 2003] J. Hershberger and S. Suri, “Binary space partitions for
3D subdivisions”, pp. 100–108 in Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (Baltimore, MD, 2003), ACM, New York, 2003.

[Hershberger et al. 2004] J. Hershberger, S. Suri, and C. D. Tóth, “Binary space
partitions of orthogonal subdivisions”, pp. 230–238 in Proc. 20th Sympos. Comput.
Geom. (Brooklyn, NY, 2004), ACM Press, 2004.

[Mata and Mitchell 1995] C. S. Mata and J. S. B. Mitchell, “Approximation algorithms
for geometric tour and network design problems”, pp. 360–369 in Proc. 11th Sympos.
Comput. Geom. (Vancouver, 1995), ACM Press, 1995.

[Mitchell et al. 1997] J. S. B. Mitchell, D. M. Mount, and S. Suri, “Query-sensitive ray
shooting”, Internat. J. Comput. Geom. Appl. 7:4 (1997), 317–347.

BINARY SPACE PARTITIONS: RECENT DEVELOPMENTS 555

[Mulmuley 1990] K. Mulmuley, “A fast planar partition algorithm, I”, J. Symbolic
Comput. 10:3-4 (1990), 253–280.

[Murali 1998] T. M. Murali, Efficient hidden-surface removal in theory and in practice,
Ph.D. thesis, D. Thesis, Department of Computer Science, Brown University,
Providence, RI, 1998.

[Naylor and Thibault 1986] B. Naylor and W. Thibault, “Application of BSP trees to
ray-tracing and CSG evaluation”, Tech. Rep. GIT-ICS 86/03, Georgia Institute of
Tech., 1986.

[Naylor et al. 1990] B. Naylor, J. A. Amanatides, and W. Thibault, “Merging BSP
trees yields polyhedral set operations”, Comput. Graph. 24:4 (1990), 115–124.

[Nguyen 1996] V. H. Nguyen, Optimal binary space partitions for orthogonal objects,
Diss. 11818, ETH Zürich, 1996.

[Nguyen and Widmayer 1995] V. H. Nguyen and P. Widmayer, “Binary space partitions
for sets of hyperrectangles”, pp. 59–72 in Algorithms, concurrency and knowledge
(Pathumthani, 1995), Lecture Notes in Comput. Sci. 1023, Springer, Berlin, 1995.

[Pach and Tardos 2002] J. Pach and G. Tardos, “On the boundary complexity of the
union of fat triangles”, SIAM J. Comput. 31:6 (2002), 1745–1760.

[Pach et al. 2003] J. Pach, I. Safruti, and M. Sharir, “The union of congruent cubes in
three dimensions”, Discrete Comput. Geom. 30:1 (2003), 133–160.

[Paterson and Yao 1990] M. S. Paterson and F. F. Yao, “Efficient binary space
partitions for hidden-surface removal and solid modeling”, Discrete Comput. Geom.
5:5 (1990), 485–503.

[Paterson and Yao 1992] M. S. Paterson and F. F. Yao, “Optimal binary space
partitions for orthogonal objects”, J. Algorithms 13:1 (1992), 99–113.

[Pauly et al. 2002] M. Pauly, M. H. Gross, and L. Kobbelt, “Efficient simplification of
point-sampled surfaces”, pp. 163–170 in Proc. 13th IEEE Visualization Conference,
2002.

[Preparata 1981] F. P. Preparata, “A new approach to planar point location”, SIAM
J. Comput. 10:3 (1981), 473–482.

[Preparata and Shamos 1985] F. P. Preparata and M. I. Shamos, Computational
geometry, Springer, New York, 1985.

[Schumacker et al. 1969] R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp,
“Study for applying computer-generated images to visual simulation”, Tech. Rep.
AFHRL–TR–69–14, U.S. Air Force Human Resources Laboratory, 1969.

[Seidel 1991] R. Seidel, “A simple and fast incremental randomized algorithm for
computing trapezoidal decompositions and for triangulating polygons”, Comput.
Geom. 1:1 (1991), 51–64.

[Shaffer and Garland 2001] E. Shaffer and M. Garland, “Efficient adaptive simplifica-
tion of massive meshes”, pp. 127–134 in Proc. 12th IEEE Visualization Conference,
2001.

[Thibault and Naylor 1987] W. C. Thibault and B. F. Naylor, “Set operations on
polyhedra using binary space partitioning trees”, Comput. Graphics 21:4 (1987),
153–162.

556 CSABA D. TÓTH

[Tobola and Nechvile 2003] P. Tobola and K. Nechvile, “Linear binary space partitions
and hierarchy of object classes”, pp. 64–67 in Proc. 15th Canadian Conf. Comput.
Geom. (Halifax, NS, 2003), 2003.

[Tóth 2003a] C. D. Tóth, “Binary space partition for orthogonal fat rectangles”, pp.
494–505 in Algorithms—ESA 2003, Lecture Notes in Comput. Sci. 2832, Springer,
Berlin, 2003.

[Tóth 2003b] C. D. Tóth, “Binary space partitions for line segments with a limited
number of directions”, SIAM J. Comput. 32:2 (2003), 307–325.

[Tóth 2003c] C. D. Tóth, “A note on binary plane partitions”, Discrete Comput. Geom.
30:1 (2003), 3–16.

Csaba D. Tóth

Department of Mathematics

Massachusetts Institute of Technology

77 Massachusetts Ave., Room 2-336

Cambridge, MA 02139

United States of America

toth@math.mit.edu

