Biogeometry:

Molecular Shape Representation Using Delaunay Triangulation

> Xinwei Shi xshi@ucdavis.edu Genome Center, UC Davis Feb 08 and 11, 2011

Molecule

- A **molecule** is a collection of at least two **atoms** held together by chemical bonds
- An **atom** is a solid objects centered at its nucleus carrying an electrical charge
- Geometrically, we consider each atom as a ball with a specific center and radius; a molecule can be viewed as a union of balls.

Number of atoms in a molecule ranges from 2 to millions

Geometry is central

Unfolded State

Folded State

Geometry is central

Function depends On protein shape

Geometric Computing for Studying Biomolecules

- Visualization of proteins and DNAs
- Size and measures
- Shape similarity and complementarity
- Shape deformation
- Simulations

Molecular Shape Representation

Three existing surface models for molecules

Van der Waals surface

Solvent accessible surface

Molecular surface

Molecular Shape Representation

- Disadvantage
 - Lack of smoothness

An example of the self-intersection of molecular surface

A New paradigm--Skin Surface

- Edelsbrunner, 1998 (part of the alpha shape theory)
- Based on a framework using <u>Delaunay</u> <u>triangulation</u> and Voronoi diagram
- Meshing of skin surfaces using <u>Delaunay</u>
 <u>triangulation</u>

Skin Definition

Skin surface

- A skin F_B is specified by a set of weighted point $B = \{b_i = (z_i, w_i) \in \mathbb{R}^d \times \mathbb{R} \mid i = 1, \dots n\}$
- In three dimensions, the skin surface is a tangent smooth surface free of self-intersection

Sphere Algebra

Addition

$$(z_i, w_i) + (z_j, w_j) = (z_i + z_j, w_i + w_j + 2 < z_i, z_j >)$$

- Scalar multiplication $c \cdot (z_i, w_i) = (c \cdot z_i, c \cdot (w_i - (1 - c) || z_i ||^2))$
- Shrinking

$$(z_i, w_i)^{1/2} = (z_i, w_i / 2)$$

$$\sqrt{B} = \{\sqrt{b_i} \mid b_i \in B\}$$

c real number; <, > dot product

aff $(B) = \{\sum_{b_i \in B} \lambda_i b_i \mid \sum_i \lambda_i = 1\}$

$\operatorname{conv}(B) = \{\sum_{b_i \in B} \lambda_i b_i \mid \sum_i \lambda_i = 1, \forall \lambda_i \ge 0\}$

Lifting Map

Every circle in R², its projection under the lifting map is the intersection of the paraboloid with a three dimensional plane

•

511 des 14:
1, Lifting Map TI

$$(x,y)kk \Rightarrow (x,yz) \in k^3, z = x^2+y^2$$

 $b_i = (z_i, w_i), \quad z_i = (P, Q), \quad Y = Jw_i$
 $(x-p)^2 + (y-q)^2 = y^2 = w_i^2$
 $(x^2+y^2 = 2Px + 2Qy - (P^2+Q^2-w_i))$
That is. $Z = 2Px + 2Qy - (P^2+Q^2-w_i)$
plane with hormally $2P, 2Q, -1$
Remark 1.
 (xy) in the circle, $x^2+y^2 \le w_i$, above
 w intersection
ourside under the plane
R.2
 $W_i \ge 0$ $P \cap Ti = x$
 $W_i \le 0$ under T_i , im Righnary
Circle
 $Paper 1930$.

Lifting Map

Convex hull of a set of circles is the projection of the upper hull of their lifting planes

•

Convex combination

 $\forall b_j \in \operatorname{aff}(B)$

$$z_j = \sum_i \lambda_i z_i,$$

$$w_j = \sum_i \lambda_i w_i + \left\| \sum_i \lambda_i z_i \right\|^2 - \sum_i \lambda_i \|z_i\|^2.$$

Slides 16: 2. proof by deduceion Center and Radius of Nobo + N, b, $b_0 = (Z_0, u_0) \ b_i = (Z_1, u_i)$ No bo = (No Zo, No (Wo - (1- No) 1/20112) Nibi = 1/12, NI (W, - (1- X,) [12,1]2) Nobit Nibi= (no Zo+1,Zi, 2< No Zo, Ni Zi > + NollZoll+ NilZH $t \lambda_0 w_0 t \lambda_1 w_1 = \frac{\|\Sigma \lambda_i Z_i \|^2}{\Sigma \lambda_i w_i}$ - XollZoll2- X112112 - Exiltzili2 3. orthogonal sphere bilbi itt T(bi, bi) = 12, -2, 11 - w, -w, =0

An example when card(B) = 2 in \mathbb{R}^2

Orthogoanality

• Two circles are called orthogonal circles if only if their weighted distance is zero

Revisit Lifting Map

Each point on the lifting plane is corresponding to a orthogonal circle of its preimage

•

4. Slides 19
4. Map a point in 30 to a circle
(m, n, t)(p, =) b; = (2; uy)
2j = (m, n) uy = m^{3}+n^{2}-t
T(bi, bj) = 1/2; -2j) - wi - (wj)
= (p-m)^{2}+(9-n)^{2} - wi - (m^{2}+n^{2}-t)
= -(2pm+29n - (p^{2}+f^{2}-w_{i})+t
= 0
Slides 20
5. If - bet bi, b(c b) => b(c b 6 Att (bi, b))
(i) des 21
6. If bib j,
$$\int bi \cap \int bj = {X \ w_{i}=w_{j}}$$

Proof: $\int bi' = (2i, \frac{w_{i}}{2}) \int bj' = (2j, \frac{w_{i}}{2})$
 $(|2i - 2j||^{2} = w_{i} + w_{j}$
 $= (\frac{\sqrt{3w_{i}}}{2} + \frac{\sqrt{2w_{j}}}{2})^{2}$

Coaxal system

Envelopes

• An **envelope** of a family of curves in the plane is a curve that is tangent to each member of the family at some point.

방송 문화가 가지 않는 것을 알려서 안 가지 않는 것 같은

THE SUBPACE MERLING

Skin and body

• For a general finite set *B*, the skin F_B is the envelope of the shrinking convex hull of *B*:

$$SKN_B = env(\sqrt{conv(B)})$$

 $BDY_B = \bigcup(\sqrt{conv(B)})$

Another Example

Complementarity

• The orthogonal sphere set of B, B^{\perp} specifies the same skin as B

 $body(B) \bigcap body(B^{\perp}) = skin(B)$ = $skin(B^{\perp}),$

 $\operatorname{body}(B) \bigcup \operatorname{body}(B^{\perp}) = \mathbb{R}^3.$

An example

The molecular skin model of protein gramcidA. and a complementary portion

Skin Decomposition

Skin

- A skin is composed of a set of quadratic pieces that joined each other smoothly
- We can decompose a skin surface into simple pieces using the Delaunay triangulation and its dual Voronoi diagram

Weighted Delaunay Triangulation

Weighted Voronoi Diagram and Delaunay triangulation defined by 4 spheres in R²

Mixed Cells in R³

Quadratic Patches in R³

Complexity

- Number of quadratic patches in the skin surface specified by n spheres can $O(n^2)$
- For molecules, the number of patches is usually linear to the number of atoms

Three dimensional example

card(X) = 1, 4

Hyperboloid patches

card(X) = 2, 3

Skin surfaces

A protein

Face model

Skin surfaces

Adaptive Meshing

Meshing

- A meshing, or triangulation of a surface *F* is a **simplicial complex** whose underlying space is **homemorphic** to F.
- Geometry preserved
 - Hausdorff distance between the surface and mesh has a upper bound
- High mesh quality.
 - The smallest angle of the mesh has a lower bound

Homeomorphism

• A map *f* is a homeomorphism if it is bijective and has a continuous inverse

Adaptive

 Triangle size in the adapts the local surface geometry

Surface curvature

Principle Normal Curvature

• Euler's formula (1760)

Curvature of skin surface

- Constant curvature (1/R) on spherical patches
- On a hyperboloid, the maximum more curvature is 1 over
 the radius of
 sandwiching
 sphere

Curvature variation

The radius of the maximum curvature (*local length scale*) of the skin surface satisfies the 1-Lipschitz condition,

$$|\varrho(x) - \varrho(y)| \le ||x - y||.$$

• This property implies that the curvature varies slowly on the surface.

Local length scale

The local length scale at a point x on the skin surface is the lower bound of the local feature size $lf_z(x)$,

Adaptive Meshing

- Generation of an adaptive sampling.
- Construct a triangulation using the samples.

ε-sampling of the Skin Surface

• A dense sample points set in terms of the local length scale

Restricted Delaunay triangulation

- A set of points $T \subseteq F_B$
- Restricted Voronoi polygon of $a \in T$ $\upsilon_a' = \upsilon_a \cap F_B$
- Restricted Voronoi Diagram $V_T = \bigcup v_a', a \in T, v_a' \neq \phi$
- Restricted Delaunay triangulation D_T of F_B is the dual of V_T

Homeomorphism Theorem

Closed Ball Property

ε need to be small

- Require $\varepsilon < 0.179$ for skin surfaces
- Precise approximation of the geometry as well

Even *ɛ*-sampling

• Two sample points should not be too close to each other

Skin Meshing using Restricted Union of Balls

Overview of the algorithm

- Generate an even *ɛ*-sampling incrementally
- Construct the Delaunay triangulation of the sample points simultaneously
- Extract the restricted Delaunay triangulation as the surface mesh

Even *ɛ*-sampling

- Using a set of *r* balls,
- Restricted union of balls: the intersection of the union of *r* balls and the skin surface

Observation

• If the restricted union of balls covers the whole surface with some feasible *r* value, the RDT of the sample points is homeomorphic to the surface and has a lower bound on its minimum angle.

Theorem

• If the restricted union of balls covers the whole surface with $0 < r < \varepsilon/(1 + \varepsilon)$, the RDT of the sample points is *homeomorphic* to the surface and has *a lower bound 20° on* its minimum angle.

Construct the Restricted Union of Ball

- Start from four seed point,
- Add new points and put *r* balls on the boundary of the RUB
- Compute the Delaunay triangulation and extract surface triangles and update the front

Extract surface triangles

• Small radius property

$$R_{abc} < \frac{\varepsilon}{1-\varepsilon} \varrho_{abc}.$$

Restricted Delauany
 property

$$\|oz\| \le \frac{\varepsilon^2}{2} \varrho_{abc},$$

 $\varrho_{abc} = \min\{\varrho(a), \varrho(b), \varrho(c)\}$

Surface Mesh

More examples

Mesh Quality

Skin model for a protein

Quality statistics

molecular	no. triangles	minimum angle distribution(%)			
name	in the mesh	$50^{\circ}-60^{\circ}$	30° - 50°	$20^{\circ}-30^{\circ}$	Less than 20°
Helix	98,017	58.21	41.56	0.23	0
HIV2	226,758	56.22	43.54	0.24	0
1CHO	253,024	56.00	43.77	0.22	0.01
1ACB	290,476	56.20	43.56	0.2397	0.0003

Table 4.2: Triangle quality distribution.

Tetrahedral Meshes

Initial Tetrahedralization

• Build a coarse tetrahedral mesh for the volume from the surface mesh

Tetrahedral Quality

• Radius-edge ratio

Skinny tetrahedra $\frac{r}{l} \ge C$

Quality Improvement

- Delaunay Refinement
 - Insert the circumcenter of the skinny tetrahedron iteratively

Challenges

- Boundary protection
 - The circumcenter of a skinny tetrahedron may be outside the skin volume
 - Result of the tetrahedral mesh not conform to the boundary

Prioritized Delaunay Refinement

- Insert the circumcenters from the region inside the skin volume to the region near the surface, so that,
- The circumcenters of the skinny tetrahedra are always inside the volume.

Prioritized Delaunay Refinement

• Distance function

$$d(x) = \inf_{p \in F_B} ||x - p||, \forall x \in \mathbb{R}^3.$$

Prioritized Delaunay Refinement

An examples

Results

Calculating Molecular Electrostatics

 Poisson Boltzmann equation describes the electrostatic potential using the continuum model of molecules in ionic solution

$$-\nabla \cdot \left(\epsilon(x)\nabla\phi(x)\right) + \bar{\kappa}^2(x)\sinh\left(\frac{e_c\phi(x)}{k_BT}\right) = 4\pi \sum_{i=1}^{N_m} q_i \delta(x - x_i)$$

Multigrids Method for Solving PBE

- Construct of a hierarchy of meshes
- Solve the system at the coarsest mesh
- Get the solution of the fine mesh step by step using coarse meshes

Mesh Coarsening

Hierarchical Mesh

Mesh Coarsening

- Constraints:
 - Mesh quality, Topology Correctness, Approximation Accuracy, Adaptive to the Curvature, and Restricted Delaunay Property.

Adaptive Mesh

[*L_i*] $R_{ab} > \frac{C_i}{Q_i} \rho_{ab}$, for every edge *ab*, [*U_i*] $R_{abc} < C_i Q_i \rho_{abc}$ for every triangle *abc*.

Algorithm

Algorithm 1 CoarsenSkinMesh (C_i, Q_i, F_B, T_{i-1})

- 1: while *eq* is not empty **do**
- 2: ab = deQueue(eq);
- 3: edgeContraction(*ab*);
- 4: Update fs;
- 5: flipEdges(fs);
- 6: Update eq and ts;
- 7: vertInsertion(*ts*);
- 8: Update fs;
- 9: flipEdges(fs);

10: end while

Results

Fig. 8. A comparison of our skin mesh coarsening algorithm with Qslim.

Discussions

- Render skin surfaces using ray tracing
- New idea for meshing
- Medial Axis of Skin
- Modeling other objects other than molecule
- Deformation

