Biogeometry:
 Molecular Shape Representation Using Delaunay Triangulation

Xinwei Shi

xshi@ucdavis.edu
Genome Center, UC Davis
Feb 08 and 11, 2011

Molecule

- A molecule is a collection of at least two atoms held together by chemical bonds
- An atom is a solid objects centered at its nucleus carrying an electrical charge
- Geometrically, we consider each atom as a ball with a specific center and radius; a molecule can be viewed as a union of balls.

Molecule

Number of atoms in a molecule ranges from 2 to millions

Geometry is central

Unfolded State
Folded State

Geometry is central

Function depends
On protein shape

Geometric Computing for Studying Biomolecules

- Visualization of proteins and DNAs
- Size and measures
- Shape similarity and complementarity
- Shape deformation
- Simulations

Molecular Shape Representation

- Three existing surface models for molecules

(a)

Van der Waals surface

(b)

Solvent accessible surface

(c)

Molecular surface

Molecular Shape Representation

- Disadvantage
- Lack of smoothness

An example of the self-intersection of molecular surface

A New paradigm--Skin Surface

- Edelsbrunner, 1998 (part of the alpha shape theory)
- Based on a framework using Delaunay triangulation and Voronoi diagram
- Meshing of skin surfaces using Delaunay triangulation

Skin Definition

Skin surface

- A skin F_{B} is specified by a set of weighted point $B=\left\{b_{i}=\left(z_{i}, w_{i}\right) \in R^{d} \times R \mid i=1, \cdots n\right\}$
- In three dimensions, the skin surface is a tangent smooth surface free of self-intersection

Sphere Algebra

- Addition

$$
\left(z_{i}, w_{i}\right)+\left(z_{j}, w_{j}\right)=\left(z_{i}+z_{j}, w_{i}+w_{j}+2<z_{i}, z_{j}>\right)
$$

- Scalar multiplication

$$
c \cdot\left(z_{i}, w_{i}\right)=\left(c \cdot z_{i}, c \cdot\left(w_{i}-(1-c)\left\|z_{i}\right\|^{2}\right)\right)
$$

- Shrinking

$$
\begin{aligned}
& \left(z_{i}, w_{i}\right)^{1 / 2}=\left(z_{i}, w_{i} / 2\right) \\
& \sqrt{B}=\left\{\sqrt{b_{i}} \mid b_{i} \in B\right\}
\end{aligned}
$$

c real number; <, > dot product

Convex Hull of B

$$
\begin{gathered}
\operatorname{aff}(B)=\left\{\sum_{b_{i} \in B} \lambda_{i} b_{i} \mid \sum_{i} \lambda_{i}=1\right\} \\
\operatorname{conv}(B)=\left\{\sum_{b_{i} \in B} \lambda_{i} b_{i} \mid \sum_{i} \lambda_{i}=1, \forall \lambda_{i} \geq 0\right\}
\end{gathered}
$$

Lifting Map

- Every circle in R^{2}, its projection under the lifting map is the intersection of the paraboloid with a three dimensional plane

slides 14:

1) Lifting Map π

$$
\begin{aligned}
& (x, y) \in R^{2} \Rightarrow \quad(x, y z) \in R^{3}, z=x^{2}+y^{2} \\
& b_{i}=\left(z_{i}, w_{i}\right), \quad z_{i}=(p, q), \quad \gamma=\sqrt{w_{i}} \\
& \quad(x-p)^{2}+(y-q)^{2}=r^{2}=w_{i} \\
& x^{2}+y^{2}=2 p x+2 q y-\left(p^{2}+q^{2}-w_{i}\right)
\end{aligned}
$$

Thatis. $\quad z=2 p x+2 q y-\left(p^{2}+q^{2}-w_{i}\right)$
plane with normal $p_{t}(2 p, 2 q,-1)$
Remark 1: $\quad(x y)$ in the circle, $x^{2}+y^{2}<w_{i}$, above the on : intersection outside under the plane
R. $2 \quad w_{i}>0, \quad \operatorname{Pn} \cap \pi \neq \phi$
$w_{i}=0 \quad P \cap \pi=x$
wi <0 under π, imaginary circe

Voronei paper $1907 / 06$
Del paper 1930.

Lifting Map

- Convex hull of a set of circles is the projection of the upper hull of their lifting planes

Convex combination

$$
\begin{aligned}
& \forall b_{j} \in \operatorname{aff}(B) \\
& z_{j}=\sum_{i} \lambda_{i} z_{i}, \\
& w_{j}=\sum_{i} \lambda_{i} w_{i}+\left\|\sum_{i} \lambda_{i} z_{i}\right\|^{2}-\sum_{i} \lambda_{i}\left\|z_{i}\right\|^{2} .
\end{aligned}
$$

Slides 16 .
2. proof by deduction

Center and Radius of $\lambda_{0} b_{0}+\lambda_{1} b_{1}$

$$
\begin{aligned}
& b_{0}=\left(z_{0}, w_{0}\right) \quad b_{1}=\left(z_{1}, w_{1}\right) \\
& \lambda_{0} b_{0}=\left(\lambda_{0} z_{0}, \lambda_{0}\left(w_{0}-\left(1-\lambda_{0}\right)\left\|z_{0}\right\|^{2}\right)\right. \\
& \lambda_{1} b_{1}=\mid \lambda_{1} z_{1}, \lambda_{1}\left(w_{1}-\left(1-\lambda_{1}\right)\left\|z_{1}\right\|^{2}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\lambda_{0} b_{1}+\lambda_{1} b_{1}=\left(\lambda_{0} z_{0}+\lambda_{1} z_{1},\right. & \frac{2\left\langle\lambda_{0} z_{0}, \lambda_{1} z_{1}\right\rangle+\lambda_{0}\left\|^{2} z_{0}\right\|^{2}+\lambda_{1}}{2} \| z_{1} \\
& +\lambda_{0} \omega_{0}+\lambda_{1} \omega_{1} \Sigma \lambda_{i} z_{i} \|^{2} \\
& -\lambda_{0}\left\|z_{0}\right\|^{2}-\lambda_{1}\left\|z_{1}\right\|^{2} \\
& -\Sigma \lambda_{i}\left\|z_{i}\right\|^{2}
\end{array}\right)
$$

3. orthogonal sphere

$$
b_{i} \perp b_{j} \quad i+t \pi\left(b_{i}, b_{j}\right)=\mid z_{1}-z_{i} \|^{2}-w_{i}-w_{j}=0
$$

An example

(b)
(a)

An example when $\operatorname{card}(B)=2$ in R^{2}

Orthogoanality

- Two circles are called orthogonal circles if only if their weighted distance is zero

Revisit Lifting Map

- Each point on the lifting plane is corresponding to a orthogonal circle of its preimage

Slides 19
4. Map apoint in 31 to a circt

$$
\begin{aligned}
& (m, n, t) \in p_{i} \Rightarrow b_{i}=\left(z_{i} w_{j}\right) \\
& z_{j}=(m, n) \quad w_{j}=m^{2}+n^{2}-t \\
& \pi\left(b_{i}, b_{i}\right)=\left(1 z_{i}-z_{i}\right)-w_{i}-w_{j} \\
& = \\
& =(p-m)^{2}+(q-n)^{2}-w_{i}-\left(m^{2}+n^{2}-t\right) \\
& =
\end{aligned}
$$

S ${ }^{2} \mathrm{li}$ des 20
5. If $b_{k} \perp b_{i}, b_{k} \perp b_{j} \Rightarrow b_{k} \perp b \in \operatorname{AH}\left(b_{i}, b_{j}\right)$

Slides 21
6. If $b_{i} \perp b_{j}, \sqrt{b_{i}} \cap \sqrt{b_{j}}= \begin{cases}x & w_{i}=w_{j} \\ \varnothing & \end{cases}$

Proof: $\sqrt{b_{i}}=\left(z_{i}, \frac{w_{i}}{2}\right) \quad \sqrt{b_{j}}=\left(z_{j}, \frac{w_{i}}{2}\right)$

$$
\begin{aligned}
\left\|z_{i}-z_{j}\right\|^{2} & =w_{i}+w_{i} \\
& \geqslant w_{i}+w_{i}-\left(\frac{\sqrt{2 w_{i}}}{2}-\frac{\sqrt{2} w_{i}}{2}\right)^{2} \\
& =\left(\frac{\sqrt{2 w_{i}}}{2}+\frac{\sqrt{2 w_{j}}}{2}\right)^{2}
\end{aligned}
$$

Coaxal system

Envelopes

- An envelope of a family of curves in the plane is a curve that is tangent to each member of the family at some point.

7. slides 22

Envelop

$$
(x-\tau)^{2}+y^{2}=\tau^{2}+1
$$

Atter shxinking

$$
\begin{aligned}
& f(\tau, x, y)=(x-\tau)^{2}+y^{2}-\frac{\left(\tau^{2}+1\right)}{2} \\
& \frac{\partial f}{\partial \tau}=-2(x-\tau)-\tau=\tau-2 x=0 \\
& \tau=2 x \\
& f(2 x, x, y)= \\
& =x^{2}+y^{2}-\frac{4 x^{2}+1}{2} \\
& =
\end{aligned}
$$

Skin and body

- For a general finite set B, the skin F_{B} is the envelope of the shrinking convex hull of B :

$$
\begin{aligned}
& S K N_{B}=\operatorname{env}(\sqrt{\operatorname{conv}(B)}) \\
& B D Y_{B}=\bigcup(\sqrt{\operatorname{conv}(B)})
\end{aligned}
$$

The Example

- $B=\left\{b_{1}, b_{2}\right\}$

Another Example

Complementarity

- The orthogonal sphere set of B, B^{\perp} specifies the same skin as B

$$
\begin{aligned}
\operatorname{body}(B) \bigcap \operatorname{body}\left(B^{\perp}\right) & =\operatorname{skin}(B) \\
& =\operatorname{skin}\left(B^{\perp}\right), \\
\operatorname{body}(B) \bigcup \operatorname{body}\left(B^{\perp}\right) & =\mathbb{R}^{3} .
\end{aligned}
$$

An example

The molecular skin model of protein gramcidA. and a complementary portion

Skin Decomposition

Skin

- A skin is composed of a set of quadratic pieces that joined each other smoothly
- We can decompose a skin surface into simple pieces using the Delaunay triangulation and its dual Voronoi diagram

Weighted Delaunay Triangulation

Weighted Voronoi Diagram and Delaunay triangulation defined by 4 spheres in R^{2}

Mixed Complex

- The mixed complex M_{B} partition the space to convex polyhedra

Skin decomposition

- The skin clipped in each mixed cell is quadratic $F_{B} \cap \mu_{X}=\operatorname{env}(\sqrt{\operatorname{aff}(X)}) \cap \mu_{X}$

Mixed complex

Skin

In 2 dimensions, $\operatorname{card}(X)=1$, sphere $\operatorname{card}(X)=2$, hyperbola $\operatorname{card}(X)=3$, sphere (inverse)

Mixed Cells in R^{3}

Quadratic Patches in R^{3}

Complexity

- Number of quadratic patches in the skin surface specified by n spheres can $O\left(n^{2}\right)$
- For molecules, the number of patches is usually linear to the number of atoms

Three dimensional example

Sphere patches

$\operatorname{card}(X)=1,4$

$\operatorname{card}(X)=2,3$

A protein
Face model

Skin surfaces

Adaptive Meshing

Meshing

- A meshing, or triangulation of a surface F is a simplicial complex whose underlying space is homemorphic to F.
- Geometry preserved
- Hausdorff distance between the surface and mesh has a upper bound
- High mesh quality.
- The smallest angle of the mesh has a lower bound

Simplicial Complex

- Simplex

- Simplicial complex and its underlying space

Homeomorphism

- A map f is a homeomorphism if it is bijective and has a continuous inverse

Adaptive

- Triangle size in the adapts the local surface geometry

Curvature--Plane curves

Surface curvature

- Principle Normal Curvature

- Euler's formula (1760)

Curvature of skin surface

- Constant curvature (1/R) on spherical patches
- On a hyperboloid, the maximum more curvature is 1 over the radius of sandwiching sphere

Curvature variation

- The radius of the maximum curvature (local length scale) of the skin surface satisfies the 1Lipschitz condition,

$$
|\varrho(x)-\varrho(y)| \leq\|x-y\|
$$

- This property implies that the curvature varies slowly on the surface.

Local length scale

- The local length scale at a point x on the skin surface is the lower bound of the local feature size $\operatorname{lfz}(x)$,

Adaptive Meshing

- Generation of an adaptive sampling.
- Construct a triangulation using the samples.

ε-sampling of the Skin Surface

- A dense sample points set in terms of the local length scale

Restricted Delaunay triangulation

- A set of points $T \subseteq F_{B}$
- Restricted Voronoi polygon of $a \in T$

$$
v_{a}^{\prime}=v_{a} \cap F_{B}
$$

- Restricted Voronoi

Diagram $V_{T}=\bigcup v_{a}{ }^{\prime}, a \in T, \nu_{a}{ }^{\prime} \neq \phi$

- Restricted Delaunay triangulation $D_{T}{ }^{\prime}$ of F_{B} is the dual of V_{T}

Homeomorphism Theorem

- Closed Ball Property

ε need to be small

- Require $\varepsilon<0.179$ for skin surfaces
- Precise approximation of the geometry as well

Even ε-sampling

- Two sample points should not be too close to each other

Skin Meshing using Restricted Union of Balls

Overview of the algorithm

- Generate an even ε-sampling incrementally
- Construct the Delaunay triangulation of the sample points simultaneously
- Extract the restricted Delaunay triangulation as the surface mesh

Even ε-sampling

- Using a set of r balls,
- Restricted union of balls: the intersection of the union of r balls and the skin surface

Observation

- If the restricted union of balls covers the whole surface with some feasible r value, the RDT of the sample points is homeomorphic to the surface and has a lower bound on its minimum angle.

Theorem

- If the restricted union of balls covers the whole surface with $0<r<\varepsilon /(1+\varepsilon)$, the RDT of the sample points is homeomorphic to the surface and has a lower bound 20° on its minimum angle.

Construct the Restricted Union of Ball

- Start from four seed point,
- Add new points and put r balls on the boundary of the RUB
- Compute the Delaunay triangulation and extract surface triangles and update the front

Extract surface triangles

- Small radius property

$$
R_{a b c}<\frac{\varepsilon}{1-\varepsilon} \varrho_{a b c}
$$

- Restricted Delauany property

$$
\begin{aligned}
\|o z\| & \leq \frac{\varepsilon^{2}}{2} \varrho_{a b c} \\
\varrho_{a b c} & =\min \{\varrho(a), \varrho(b), \varrho(c)\}
\end{aligned}
$$

Surface Mesh

Skin model for a protein

Quality statistics

molecular name	no. triangles in the mesh	ninimum angle distribution(\%)			
Helix	98,017	58.21	41.56	0.23	0
HIV2	226,758	56.22	43.54	0.24	0
1 CHO	253,024	56.00	43.77	0.22	0.01
$1 A C B$	290,476	56.20	43.56	0.2397	0.000

Table 4.2: Triangle quality distribution.

Tetrahedral Meshes

Initial Tetrahedralization

- Build a coarse tetrahedral mesh for the volume from the surface mesh

Tetrahedral Quality

- Radius-edge ratio

Skinny tetrahedra $\quad \frac{r}{l} \geq c$

Quality Improvement

- Delaunay Refinement
- Insert the circumcenter of the skinny tetrahedron iteratively

Challenges

- Boundary protection
- The circumcenter of a skinny tetrahedron may be outside the skin volume
- Result of the tetrahedral mesh not conform to the boundary

Prioritized Delaunay Refinement

- Insert the circumcenters from the region inside the skin volume to the region near the surface, so that,
- The circumcenters of the skinny tetrahedra are always inside the volume.

Prioritized Delaunay Refinement

- Distance function

$$
d(x)=\inf _{p \in F_{B}}\|x-p\|, \forall x \in \mathbb{R}^{3} .
$$

Prioritized Delaunay Refinement

\square

An examples

Calculating Molecular Electrostatics

- Poisson Boltzmann equation describes the electrostatic potential using the continuum model of molecules in ionic solution

$$
\begin{aligned}
& \left.\nabla^{2} \phi_{1}(x)\right)=\Sigma_{i=1}^{N_{m}} \frac{-4 \pi q_{i}}{\epsilon_{1}} \delta\left(x-x_{i}\right) \\
& \left.\nabla^{2} \phi_{2}(x)\right)=\kappa^{2} \frac{k_{B} T}{e_{c}} \sinh \left(\frac{e_{c} \phi_{2}(x)}{k_{B} T}\right) \\
& -\nabla \cdot(\epsilon(x) \nabla \phi(x))+\bar{\kappa}^{2}(x) \sinh \left(\frac{e_{c} \phi(x)}{k_{B} T}\right)=4 \pi \sum_{i=1}^{\Lambda_{2}} q_{i} \delta\left(x-x_{i}\right)
\end{aligned}
$$

Multigrids Method for Solving PBE

- Construct of a hierarchy of meshes
- Solve the system at the coarsest mesh
- Get the solution of the fine mesh step by step using coarse meshes

Mesh Coarsening

Hierarchical Mesh

Mesh Coarsening

- Constraints:

- Mesh quality, Topology Correctness, Approximation Accuracy, Adaptive to the Curvature, and Restricted Delaunay Property.

Adaptive Mesh

$\left[L_{i}\right] R_{a b}>\frac{C_{i}}{Q_{i}} \rho_{a b}$, for every edge $a b$, $\left[U_{i}\right] R_{a b c}<C_{i} Q_{i} \rho_{a b c}$ for every triangle $a b c$.

Algorithm

Algorithm 1 CoarsenSkinMesh $\left(C_{i}, Q_{i}, F_{B}, T_{i-1}\right)$
1: while $e q$ is not empty do
2: $\quad a b=\operatorname{deQueue}(e q)$;
3: edgeContraction(ab);
4: Update $f s$;
5: flipEdges $(f s)$;
6: \quad Update $e q$ and $t s$;
7: vertInsertion $(t s)$;
8: Update $f s$;
9: flipEdges($f s$);
10: end while

Fig. 8. A comparison of our skin mesh coarsening algorithm with Qslim.

Discussions

- Render skin surfaces using ray tracing
- New idea for meshing
- Medial Axis of Skin
- Modeling other objects other than molecule
- Deformation

