
Handout
Convex hull conflict lists analysis

1 Data structures

We assume there are two data structures in the general-dimensional convex hull algorithm.
One stores the convex hull itself. We won’t concern ourselves with the details here, but it
has to include (implicitly or explicitly) a graph on the polytope facets, where two facets are
connected by an edge if they share a ridge. I must be possible to traverse this graph in time
O(number of ridges).

The second data structure is the conflict list. This is a bipartite graph, with un-added points
on one side, and existing facets on the other. Every un-added point p is connected by an
edge to one existing facet f which is visible from p. Unlike the conflict graph described in the
book, we maintain exactly one edge. So if p happens to be added next, we can find all of the
visible facets from p (the ones destroyed by the insertion of p) by doing a depth-first-search
on the facet graph of the polytope, stopping whenever we see a hidden facet.

After the insertion of p, we remove all of these destroyed facets and the edges to them in
conflict list. We need to find a replacement facet for each unadded point that is left isolated.
To do this, we do a depth-first search on the destroyed facets visible from p. Either we find a
facet adjacent to the horizon, or not. In the latter case, p is now inside the convex hull and
can be removed from the conflict list. In the former case, we check the new facet f adjacent
to that ridge. If f is visible from p, we add the new edge to the conflict list. Otherwise, p is
now inside the convex hull.

2 What to count

Lets begin by defining some indicator variables. Ip,f says that a specific face f of some
intermediate convex hull is in conflict with a specific un-added point p. Di,f says that face
f is destroyed at insertion i, and Ci,f says that f is created at insertion i.

The worst thing that can happen to a point p at insertion i is that that the face f that p is
pointing to will be destroyed, and, even worse, to find a new face to point to, p will have to
examine every other face that is destroyed by insertion i and in conflict with p as well. So
lets make a random variable Xp,i which is the number of conflicts involving p destroyed at
insertion i. Lets sum these up for one point:

Xp,i =
∑
f

Di,f × Ip,f

Summing over all points:
Xi =

∑
p

∑
f

Di,f × Ip,f

1



Summing over all insertions, we count every face once whether it is eventually destroyed or
not:

X =
∑
p

∑
f

Ip,f ≥
n∑

i=1

Xi

This means that the number of vertices that need to be searched by all points, over all
insertions, is at most the total number of “conflicts” between a face and a point that occur.
The total cost of maintaining the conflicts is O(X) = O(

∑
p

∑
p Ip,f ).

3 From destruction to creation

We just upper-bounded the number of conflicts that were destroyed by the total number of
conflicts. But we can count the total conflicts however we like; and it’s easier to count them
when they’re created then when they’re destroyed, that is,

X =
n∑

j=1

Xj =
n∑

j=1

∑
p

∑
f

Cj,f × Ip,f

4 Two ways of getting the expectation

The reason this is easier is that the one thing we know about any of these variables is that
we can bound the expectation of Cj,f . We don’t know a thing about the Dj,f or the Ip,f . But
we know, using backwards analysis, that each point in the ith convex hull is equally likely to
have been the last inserted, and every face is adjacent to exactly d points (assuming general
position), so E[Cj,f ] ≤ d/j for all f .

E[Xj] ≤
∑
p

∑
f

d/j × Ip,f = d/j
∑
p

∑
f

Ip,f

But we’re still stuck with those Ip,f .

We need to find some other fact about Ip,f that we can introduce. We notice that Ip,f = 1
when the insertion of p destroys f . Any p is equally likely to be the next point inserted. So
we can express the expected number of vertices destroyed as an average:

E[Dj+1] =
1

n− j

∑
p

∑
f

Ip,f

Putting this new fact together with what we had before, we get:

E[Xj] ≤ d/j × (n− j) × E[Dj+1]

This is great, since we got rid of the Ip,f .

2



5 From destruction to creation, again

Unfortunately we got the Dj+1 back, but we can get rid of those the same way we did
before, by counting faces when they’re created rather than when they’re destroyed. First
we’ll exchange the order of E and

∑
a number of times, so that the total expectation is

expressed as a sum of the indicator variables Dj,f .

E[X] =
n∑

j=1

E[Xj] =
n∑

j=1

d(n− j)

j
× E[Dj+1] =

n∑
j=1

d(n− j)

j
E[

∑
f

Dj,f+1] =

E[
∑
f

n∑
j=1

d(n− j)

j
Dj,f+1]

6 Reforming the tax code

Here’s another way to think of this last expression: every face f gets charged a “tax” of
d(n−j)

j
for being destroyed at insertion j + 1. The last expression is the total tax we’d expect

to collect. Now what if we reform the tax code so that we tax each face d(n−i)
i

for being
created at insertion i instead. Although the citezens probably won’t notice the difference,
the government will collect more money: we’ll tax more individual faces, and, since i ≤ j,
each f gets charged at least as much (d(n−i)

i
≥ d(n−j)

j
for i ≤ j). Hence:

E[X] ≤ E[
∑
f

n∑
i=1

d(n− i)

i
Ci,f ]

Which, re-exchanging E and
∑

, means that

E[X] ≤
n∑
i=i

d(n− i)

i
E[Ci]

7 Putting it all together

And we have a bound on E[Ci], thanks again to the standard backwards analysis argument.
In R3,

E[Ci] = O(1)

Putting this together, we get, in R3,

E[X] ≤
n∑
i=i

3(n− i)

i
×O(1) =

3



O(n)
n∑
i=i

1/i = O(n lg n)

And in dimension d,
E[Ci] ≤ d/i O(ibd/2c)

So that our bound comes out to be

E[X] ≤
n∑
i=i

d(n− i)

i
× d/i O(ibd/2c) =

n∑
i=i

d2
n− i

i2
O(ibd/2c) =

O(d2n)
n∑
i=i

O(ibd/2c−2) =

O(nbd/2c)

4


