V. Greedy Algorithms
Greedy algorithms – Overview

▶ Algorithms for solving (optimization) problems typically go through a sequence of steps, with a set of choices at each step.

▶ A greedy algorithm always makes the choice that looks best at the moment, without regard for future consequence, i.e., “take what you can get now” strategy

▶ Greedy algorithms do not always yield optimal solutions,

\[\text{Local optimum} \iff \text{Global optimum} \]

▶ but for many problems they do.
Activity-selection problem

Problem statement:

Input: Set \(S = \{1, 2, \ldots, n\} \) of \(n \) activities
- \(s_i = \text{start time of activity } i \)
- \(f_i = \text{finish time of activity } i \)

Output: Maximum-size subset \(A \subseteq S \) of *compatible* activities

Notes:
- Activities \(i \) and \(j \) are *compatible* if the intervals \([s_i, f_i)\) and \([s_j, f_j)\) do not overlap.
- Without loss of generality, assume
 \[
f_1 \leq f_2 \leq \cdots \leq f_n
\]
Activity-selection problem

Greedy algorithm:

- pick the compatible activity with the earliest finish time.

Why?

- Intuitively, this choice leaves as much opportunity as possible for the remaining activities to be scheduled

- That is, the greedy choice is the one that maximizes the amount of unscheduled time remaining.
Activity-selection problem

Greedy_Activity_Selector(s,f)
n = length(s)
A = {1}
j = 1
for i = 2 to n
 if s[i] >= f[j]
 A = A U {i}
 j = i
 end if
end for
return A

Remarks
▶ Assume the array f already sorted
▶ Complexity: $T(n) = O(n)$
Activity-selection problem

Question: Does Greedy_Activity_SELECTOR work?
Answer: Yes!

Theorem. Algorithm Greedy_Activity_SELECTOR produces a solution of the activity-selection problem.
Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice “1” in A.

Proof:

- Let's order the activities in A by finish time such that the first activity in A is “k_1”.
- If $k_1 = 1$, then A begins with a greedy choice.
- If $k_1 \neq 1$, then let $A' = (A - \{k_1\}) \cup \{1\}$.
 Then
 1. the sets $A - \{k_1\}$ and $\{1\}$ are disjoint
 2. the activities in A' are compatible
 3. A' is also optimal, since $|A'| = |A|

Therefore, we conclude that there always exists an optimal solution that begins with a greedy choice.
Property 2.

If A is an optimal solution, then $A' = A - \{1\}$ is an optimal solution to $S' = \{i \in S, s[i] \geq f[1]\}$.

Proof: By contradiction. If there exists B' to S' such that $|B'| > |A'|$, then let

$$B = B' \cup \{1\},$$

we have

$$|B| > |A|,$$

which is contradicting to the optimality of A.
Activity-selection problem

Proof of **Theorem**: By Properties 1 and 2, we know that

- After each greedy choice is made, we are left with an optimization problem of the same form as the original.

- *By induction* on the number of choices made, making the greedy choice at every step proceduces an optimal solution.

Therefore, the Greedy_Activity_Selector produces a solution of the activity-selection problem.
Activity-selection problem

- Property 1 is called **the greedy-choice property**, generally casted as

 a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

- Property 2 is called **the optimal substructure property**, generally casted as

 an optimal solution to the problem contains within it optimal solution to subprograms.

These are **two key properties** for the success of greedy algorithms.