Queues and stacks are dynamic sets in which the elements removed from the set is prescribed.

The queue implements a First-In-First-Out (FIFO) policy. The stack implements a Last-In-First-Out (LIFO) policy.

Queue supports the following operations:
- Enqueue(Q,v): insert element v into the queue Q
- Dequeue(Q,v): delete element v from the queue Q

There are several way efficient ways to implement queues and stacks, see section 10.1.
Breadth-First Search (BFS)

- An archetype for many important graph algorithms

- **Input:** Given $G = (V, E)$ and a source vertex s,

 Output: $d[v] = \text{distance}$ from s to v for all $v \in V$.

- **distance** = fewest number of edges = shortest path

- **BFS basic idea:**
 - discovers all vertices at distance k from the source vertex before discovering any vertices at distance $k + 1$
 - or expanding frontier – “greedy” – propagate a wave 1 edge-distance at a time.
Breadth-First Search (BFS)

BFS(G, s)
for each vertex u in V-{s}
 d[u] = +infty
endfor

d[s] = 0
Q = empty // create FIFO queue
Enqueue(Q, s)
while Q not empty
 u = Dequeue(Q)
 for each v in Adj[u]
 if d[v] = +infty,
 d[v] = d[u] + 1
 Enqueue(Q, v)
 endif
 endfor
endwhile

return d
Breadth-First Search (BFS)

- Breadth-First spanning tree
- Running time: $O(|V| + |E|)$

$O(|V|)$: every vertex enqueued at most once

$O(|E|)$: every vertex dequeued at most once and we examine (u, v) only when u is dequeued at most once if directed, at most twice if undirected.

Note: not $\Theta(|V| + |E|)$!

- Correctness of BFS
 shortest path proof – see pp.597-600 of [CLRS,3rd ed.]
 similar with weighted edges – Dijkstra’s algorithm – to be discussed