The closest pair point

Problem statement:

Given a set of \(n \) points on a line (1-dimensional, unsorted), find two points whose distance is smallest.

Remark:

- The problem is known as the closest pair problem in 1-dimension. Section 33.4 provides an algorithm for finding the closest pair of points in 2-dimension, i.e., on a plane, using the DC strategy we study here.
The closest pair point

A brute-force solution

- Pick two of \(n \) points and compute the distance

Remark:

- Cost:

\[
T(n) = \binom{n}{2} = \frac{n!}{2!(n-2)!} = \Theta(n^2).
\]
The closest pair point

Algorithm 1

1. Sort the points, say Merge Sort
2. Perform a linear scan

Remarks:

▶ Cost: $\Theta(n \lg n) + \Theta(n) = \Theta(n \lg n)$

▶ Unfortunately, the algorithm cannot be extended to the 2-dimension case.
The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. **Divide** the set S of n points by some point mid (say, median) into two sets S_1 and S_2 such that

 \[p < q \quad \text{for all } p \in S_1 \text{ and } q \in S_2 \]

2. **Conquer:**

 (a) finds the closest pair *recursively* on S_1 and S_2, gives us two closest pairs of points \(\{p_1, p_2\} \in S_1 \) and \(\{q_1, q_2\} \in S_2 \)

 (b) finds the *closest crossing pair* \(\{p_3, q_3\} \) with $p_3 \in S_1$ and $q_3 \in S_2$.

3. **Combine:** the closest pair in the set S is

 \[\arg \min \{|p_1 - p_2|, |q_1 - q_2|, |p_3 - q_3|\} \].
The closest pair point

Remarks:

1. Both \(p_3 \) and \(q_3 \) must be within distance \(d = \min\{|p_1 - p_2|, |q_1 - q_2|\} \) of \(\text{mid} \) if \(\{p_3, q_3\} \) is to have a distance smaller than \(d \).

2. How many points of \(S_1 \) can lie in \((\text{mid} - d, \text{mid})\)?
 \[\text{answer: at most one} \]

3. How many points of \(S_2 \) can lie in \([\text{mid}, \text{mid} + d)\)?
 \[\text{answer: at most one} \]

4. Therefore, the number of pairwise comparisons that must be made between points in different subsets is thus \text{at most one}.
The closest pair point

ClosestPair(S)
if |S| = 2, then
else
 if |S| = 1
 d = infty
 else
 m = median(S)
 construct S1 and S2
 d1 = ClosestPair(S1)
 d2 = ClosestPair(S2)
 p = max(S1)
 q = min(S2)
 d = min(d1, d2, q-p)
 end if
end if
return d
The closest pair point

Remark:

1. A median is the “halfway point” of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).

2. The points in the intervals $(\text{mid} - d, \text{mid}]$ and $[\text{mid}, \text{mid} + d)$ can be found in linear time $O(n)$.

3. Complexity for finding the closest pair of points in 1-dimension:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n).$$
Extra: Medians and order statistics

- Selection problem:

 Input:

 A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

 Output:

 The element $x \in A$ that is larger than exactly $i - 1$ other elements of A. In other words, x is the ith smallest element of A.

- A median is the “halfway point” of the set A, i.e., $i = \lceil (n + 1)/2 \rceil$.
- A simple sorting algorithm will take $O(n \log n)$ time.
- Yet, a DC strategy leads to running time of $O(n)$ — see Chapter 9.