Depth-First Search (DFS)

- Another archetype for many important graph algorithms
- Methodically explore every vertex and every edge
- Input: $G = (V, E)$

Output: (1) two timestamps for every $v \in V$
- $d[v] =$ when v is first discovered.
- $f[v] =$ when v is finished.
(2) classification of edges
DFS

- Basic idea:
 - *go as far as possible, then “back up”,*
 - edges are explored out of the most recently discovered vertex \(v \) that still have unexplored edges leaving,
 - when all of \(v \)'s edges have been explored, the search “backtracks” to explore edges leaving the vertex from which \(v \) was discovered.

- Three-color code for search status of vertices
 - **White** = a vertex is undiscovered
 - **Gray** = a vertex is discovered, but its processing is incomplete
 - **Black** = a vertex is discovered, and its processing is complete
DFS

DFS(G) // main routine
for each vertex u in V
 color[u] = ‘white’
endfor

time = 0
for each vertex u in V
 if color[u] = ‘white’
 DFS-Visit(u)
 endif
endfor

// end of main routine

DFS-Visit(u) // subroutine
color[u] = ‘gray’
time = time + 1
d[u] = time
for each v in Adj[u]
 if color[v] = ‘white’
 DFS-visit(v)
 endif
end for
color[u] = ‘black’
time = time + 1
f[u] = time
// end of subroutine
DFS

Remarks:

- Vertices, from which exploration is incomplete, are processed in a LIFO stack.

- Running time: $\Theta(|V| + |E|)$

 not big-O since guaranteed to examine every vertex and edge.

- For more properties of DFS, see pp.606-608 of [CLRS,3rd ed.]
DFS

Classification of edges:

- **T** = Tree edge = encounter new vertex (*gray to white*)
- **B** = Back edge = from descendant to ancestor (*gray to gray*)
- **F** = Forward edge = from ancestor to descendant (*gray to black*)
- **C** = Cross edge = any other edges (between trees and subtrees) (*gray to black*)

Note: In an undirected graph, there may be some ambiguity since edge \((u,v)\) and \((v,u)\) are the same edge. Classify by the first type that matches.
DFS vs. BFS

1. **DFS**: vertices from which the exploring is incomplete are processed in a LIFO order (**stack**)

 BFS: vertices to be explored are organized in a FIFO order (**queue**)

2. **DFS** contains two processing opportunities for each vertex \(v \), when it is “discovered” and when it is “finished”

 BFS contains only one processing opportunity for each vertex \(v \), and then it is dequeued