Applications of DFS

1. For a **undirected** graph,
 (a) a DFS produces only Tree and Back edges
 (b) acyclic (tree) iff a DFS yields no back edges

2. A **directed** graph is acyclic iff a DFS yields no back edges, i.e.,
 \[\text{dag} \iff \text{no back edges} \]

3. Topological sort of a dag (= directed acyclic graph) – next

4. Connected components of a undirected graph (see Homework 6)

5. Strongly connected components of a directed graph (see Sec.22.5 of [CLRS,3rd ed.])
Topological sort

- A topological sort (TS) of a dag $G = (V, E)$ is a linear ordering of all its vertices such that if $(u, v) \in E$, then u appears before v.
- A TS is not possible if G has a cycle.
- The ordering is not necessarily unique.
Topological sort

Application: call-graph
Topological sort

Application: call-graph
Topological sort

- TS algorithm
 1. run DFS(G) to compute finishing times $f[v]$ for all $v \in V$
 2. output vertices in order of decreasing times

- Running time: $\Theta(|V| + |E|)$
Topological sort

Example: “Getting-dressed-graph” and DFS

The following simple algorithm topologically sorts a dag:

1. call DFS(G) to compute finishing times

2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order of their finishing times.

We can perform a topological sort in time $O(V + E)$, since depth-first search takes $O(V + E)$ time and it takes $O(1)$ time to insert each of the $|V|$ vertices onto the front of the linked list.

We prove the correctness of this algorithm using the following key lemma characterizing directed acyclic graphs.
Topological sort

Theorem (correctness of the algorithm):
TS(G) produces a topological sort of a dag G.

Proof: *Just need to show that if* \((u, v) \in E\), *then* \(f[v] < f[u]\). *When we explore edge* \((u, v)\), *u is gray, what’s the color of v?*

- **Is v gray too?**
 no, because then v would be ancestor of u, edge \((u, v)\) is a back edge, a contradiction of a dag.

- **Is v white?**
 yes, then v is descendant of u, by DFS, \(d[u] < d[v] < f[v] < f[u]\)

- **Is v black?**
 yes, then v is already finished. Since we’re exploring \((u, v)\), we have not yet finished u, therefore \(f[v] < f[u]\)