Overview

I. Introduction and getting started
II. Growth of functions and asymptotic notations
III. Divide-and-conquer recurrences and the master theorem
IV. Divide-and-conquer algorithms
V. Greedy algorithms
VI. Dynamic programming
VII. Graph algorithms
VIII. NP-completeness
I. Introduction and Getting Started
Introduction

- Algorithm is a tool for solving a well-specified computational problem.
Introduction

- Algorithm is a tool for solving a well-specified computational problem
- An algorithm is a well-defined procedure for transforming some input into a desired output
Algorithm is a tool for solving a well-specified computational problem.

An algorithm is a well-defined procedure for transforming some input into a desired output.

A poem by D. Berlinski in “Advent of the Algorithm”

In the logician’s voice:

> an algorithm is
> a finite procedure,
> written in a fixed symbolic vocabulary
> governed by precise instructions,
> moving in discrete steps, 1, 2, 3, ...
> whose execution requires no insight, cleverness,
> intuition, intelligence, or perspicuity
> and that sooner or later comes to an end.
Introduction

> Basic questions about an algorithm

1. Does it halt?
2. Is it correct?
3. Is it fast? (Can it be faster?)
4. How much memory does it use?
5. How does data communicate?
Introduction

- Basic questions about an algorithm
 1. Does it halt?
 2. Is it correct?
 3. Is it fast? (Can it be faster?)
 4. How much memory does it use?
 5. How does data communicate?

- Algorithms as a technology
 TED Talk: *How Algorithms Shape Our World* by Kevin Slavin
Getting started: example 1

- Fibonacci numbers:

\[F_0 = 0, \]
\[F_1 = 1, \]
\[F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n \geq 2 \]
Getting started: example 1

▶ Fibonacci numbers:

\[F_0 = 0, \]
\[F_1 = 1, \]
\[F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n \geq 2 \]

▶ Fibonacci numbers grow *almost* as fast as the power of 2:

\[F_n \approx 2^{0.694n} \]
Getting started: example 1

- Fibonacci numbers:
 \[
 F_0 = 0, \\
 F_1 = 1, \\
 F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n \geq 2
 \]

- Fibonacci numbers grow *almost* as fast as the power of 2:
 \[
 F_n \approx 2^{0.694n}
 \]

- Problem statement:
 computing the \(n\)-th *Fibonacci number* \(F_n\)
Getting started: example 1

- Fibonacci numbers:

\[
\begin{align*}
F_0 &= 0, \\
F_1 &= 1, \\
F_n &= F_{n-1} + F_{n-2} & \text{for } n \geq 2
\end{align*}
\]

- Fibonacci numbers grow *almost* as fast as the power of 2:

\[
F_n \approx 2^{0.694n}
\]

- Problem statement:

computing the n-th Fibonacci number \(F_n\)

- Algorithms for computing the n-th Fibonacci number \(F_n\):
 1. Recursion (*"top-down"*)
 2. Iteration (*"bottom-up", memoization*)
 3. Divide-and-conquer
 4. Approximation
Getting started: example 2

- Problem statement:

 Input: a sequence of \(n \) numbers \(\langle a_1, a_2, \ldots, a_n \rangle \)

 Output: a permutation (reordering) \(\langle a'_1, a'_2, \ldots, a'_n \rangle \) of the \(a \)-sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \)

 In short, *sorting*
Getting started: example 2

Problem statement:

Input: a sequence of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$
Output: a permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the a-sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

In short, sorting

Algorithms:

1. Insertion sort
2. Merge sort
Getting started: example 2

Insert sort algorithm

- Idea: incremental approach
- Pseudocode

```plaintext
InsertionSort(A)
1   n = length(A)
2   for j = 2 to n
3       key = A[j]
4       // insert ‘key’ into sorted array A[1...j-1]
5       i = j-1
6       while i > 0 and A[i] > key do
7           A[i+1] = A[i]
8           i = i-1
9       end while
10      A[i+1] = key
11   end for
12   return A
```
Getting started: example 2

Remarks:

- Correctness: argued by “loop-invariant” (a kind of induction)
- Complexity analysis:
 - best-case
 - worst-case
 - average-case
- Insertion sort is a “sort-in-place”, no extra memory necessary
- Importance of writing a good pseudocode = “expressing algorithm to human”
- There is a recursive version of insertion sort, see Homework 1.
Getting started: example 2

Merge sort algorithm

▶ Idea: divide-and-conquer approach

▶ Pseudocode

```plaintext
MergeSort(A, p, r)    // Merge-sort of array A[p..r]
1  if p < r then      // check for base case
2    q = flooring((p+r)/2)    // divide
3    MergeSort(A, p, q)      // conquer
4    MergeSort(A, q+1, r)    // conquer
5    Merge(A, p, q, r)       // combine
6  end if
```
Getting started: example 2

- Pseudocode, cont’d

Merge(A,p,q,r)
\[n1 = q-p+1; \quad n2 = r-q \]
for \(i = 1 \) to \(n1 \) // create arrays \(L[1...n1+1] \) and \(R[1...n2+1] \)
\[L[i] = A[p+i-1] \]
end for
for \(j = 1 \) to \(n2 \)
\[R[j] = A[q+j] \]
end for
\[L[n1+1] = \text{infty}; \quad R[n2+1] = \text{infty} \] // mark the end of arrays \(L \) and \(R \)
i = 1; j = 1
for \(k = p \) to \(r \) // Merge arrays \(L \) and \(R \) to \(A \)
if \(L[i] \leq R[j] \) then
\[A[k] = L[i] \]
i = i+1
else
\[A[k] = R[j] \]
j = j+1
end if
end for
Getting started: example 2

- Merge sort is a divide-and-conquer algorithm consisting of three steps: divide, conquer and combine.
- To sort the entire sequence $A[1...n]$, we make the initial call

 $\text{MergeSort}(A,1,n)$

 where $n = \text{length}(A)$.
- Complexity analysis:

 $$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n - 1 = \mathcal{O}(n \log(n))$$