0-1 Knapsack problem

Problem statement:
- Given n items $\{1, 2, \ldots, n\}$
- Item i is worth v_i, and weight w_i
- Find a most valuable subset of items with total weight $\leq W$

Problem statement, mathematically:

Find a subset $S \subseteq \{1, 2, \ldots, n\}$ such that

\[
\text{maximize } \sum_{i \in S} v_i \\
\text{subject to } \sum_{i \in S} w_i \leq W
\]

Rule: have to either take an item or not take it – can’t take part of it.
0-1 Knapsack problem

Three possible greedy strategies:

1. Greedy by highest value v_i

2. Greedy by least weight w_i

3. Greedy by largest value density $\frac{v_i}{w_i}$

All three approaches generate feasible solutions. However, we cannot guarantee that any of them will always generate an optimal solution!
0-1 Knapsack problem

Example:

<table>
<thead>
<tr>
<th></th>
<th>v_i</th>
<th>w_i</th>
<th>v_i/w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total weight $W = 5$

Greedy by value density v_i/w_i:
- take items 1 and 2.
- value = 16, weight = 3
- Leftover capacity = 2

Optimal solution:
- take items 2 and 3.
- value = 22, weight = 5
- no leftover capacity

Question: how about greedy by highest value? by least weight?