Dynamic Programming – Summary

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Four-step (two-phase) technique:
 1. Characterize the structure of an optimal solution
 2. Recursively define the value of an optimal solution
 3. Compute the value of an optimal solution in a bottom-up fashion
 4. Construct an optimal solution from computed information
Dynamic Programming – Summary

Elements of DP:

1. **Optimal substructure:** the optimal solution to the problem contains optimal solutions to subprograms \implies recursive algorithm

 Example: LCS, recursive formulation and tree

2. **Overlapping subproblems:** There are few subproblems in total, and many recurring instances of each. (unlike divide-and-conquer, where subproblems are independent)

 Example: LCS has only mn distinct subproblems

3. **Memoization:** after computing solutions to subproblems, store in table, subsequent calls do table lookup.

 Example: LCS has running time $\Theta(mn)$
0-1 knapsack problem revisited

Problem:

Input: \(n \) items \(\{1, 2, \ldots, n\} \)
Item \(i \) is worth \(v_i \) and weight \(w_i \)
Total weight \(W \)

Output: a subset \(S \subseteq \{1, 2, \ldots, n\} \) such that

\[
\sum_{i \in S} w_i \leq W \quad \text{and} \quad \sum_{i \in S} v_i \quad \text{is maximized}
\]

Equivalently,

\[
\max_{x_i \in \{0, 1\}} \sum_{i=1}^{n} v_i x_i \\
\text{s.t.} \quad \sum_{i=1}^{n} w_i x_i \leq W
\]
0-1 knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value \(v_i \)

2. Greedy by least weight \(w_i \)

3. Greedy by largest value density \(\frac{v_i}{w_i} \)

All three approaches generate feasible solutions. However, cannot guarantee to always generate an optimal solution!
0-1 knapsack problem revisited

Example 1:

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
<th>v_i/w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total weight $W = 5$

Greedy by value density v_i/w_i:

▶ take items 1 and 2.
▶ value = 16, weight = 3

Optimal solution – by inspection

▶ take items 2 and 3.
▶ value = 22, weight = 5
0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let i_k be the highest-numbered item in an optimal solution $S = \{i_1, \ldots, i_{k-1}, i_k\}$, Then

1. $S' = S - \{i_k\}$ is an optimal solution for weight $W - w_{i_k}$ and items $\{i_1, \ldots, i_{k-1}\}$

2. the value of the solution S is

$$v_{i_k} + \text{the value of the subproblem solution } S'$$
0-1 knapsack problem revisited

- Define $c[i, w] = \text{value of an optimal solution for items } \{1, \ldots, i\}$ and maximum weight w.

- Then we have the following two cases for the item $i > 0$:
 - **Case 1.** when $w_i > w$, the weight of item i is larger than the weight limit w, it cannot be included, and
 $$c[i, w] = c[i - 1, w]$$
 - **Case 2** when $w_i \leq w$, we have two choices:
 - choice 1: includes item i, in which case it is v_i plus a subproblem solution for $i - 1$ items and the weight excluding w_i.
 - choice 2: does not include item i, in which case it is a subproblem solution of $i - 1$ items and the same weight.

The better of these two choices should be made., that is

$$c[i, w] = \max \left\{ v_i + c[i - 1, w - w_i], c[i - 1, w] \right\}$$

choice 1 \hspace{2cm} choice 2
0-1 knapsack problem revisited

In summary,

\[c[i, w] = \begin{cases}
0 & \text{if } i = 0 \text{ or } w = 0 \\
\max \{v_i + c[i - 1, w - w_i], c[i - 1, w]\} & \text{if } i > 0 \text{ and } w_i \leq w \\
c[i - 1, w] & \text{if } i > 0 \text{ and } w_i > w
\end{cases} \]

The value of an optimal solution = \(c[n, W] \).

The set of items to take can be deduced from the \(c \)-table by starting at \(c[n, W] \) and tracing where the optimal values came from as follows:

- If \(c[i, w] = c[i - 1, w] \), item \(i \) is not part of the solution, and we continue tracing with \(c[i - 1, w] \).
- If \(c[i, w] \neq c[i - 1, w] \), item \(i \) is part of the solution, and we continue tracing with \(c[i - 1, w - w_i] \).

Running time: \(\Theta(nW) \):

- \(\Theta(nW) \) to fill in the \(c \) table
 \((n + 1)(W + 1) \) entries each requiring \(\Theta(1) \) time
- \(O(n) \) time to trace the solution
 starts in row \(n \) and moves up 1 row at each step.
0-1 knapsack problem revisited

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>v_i</th>
<th>w_i</th>
<th>v_i/w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total weight $W = 5$

By dynamic programming, we generate the following c-table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

By the table, we have

- The optimal solution (the items to take): $S = \{3, 2\}$
0-1 knapsack problem revisited

Example 2: We have $n = 9$ items with

- value $= v = [2, 3, 3, 4, 4, 5, 7, 8, 8]$
- weight $= w = [3, 5, 7, 4, 3, 9, 2, 11, 5]$;
- Total allowable weight $W = 15$

DP generates the following c-table:

<table>
<thead>
<tr>
<th>i/w</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>

By the table, we have

- The set of items to take $S = \{9, 7, 5, 4\}$.