Dynamic Programming – Summary

▶ Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)

▶ Four-step (two-phase) technique:
 1. Characterize the structure of an optimal solution
 2. Recursively define the value of an optimal solution
 3. Compute the value of an optimal solution in a bottom-up fashion
 4. Construct an optimal solution from computed information
Dynamic Programming – Summary

Elements of DP:

1. **Optimal substructure:** the optimal solution to the problem contains optimal solutions to subprograms \implies recursive algorithm

 Example: LCS, recursive formulation and tree

2. **Overlapping subproblems:** There are few subproblems in total, and many recurring instances of each. (unlike divide-and-conquer, where subproblems are independent)

 Example: LCS has only mn distinct subproblems

3. **Memoization:** after computing solutions to subproblems, store in table, subsequent calls do table lookup.

 Example: LCS has running time $\Theta(mn)$
0-1 Knapsack problem revisited

Problem:

\textit{Input:} \(n \) items \(\{1, 2, \ldots, n\} \)

\hspace{1cm} Item \(i \) is worth \(v_i \) and weight \(w_i \)

\hspace{1cm} Total weight \(W \)

\textit{Output:} a subset \(S \subseteq \{1, 2, \ldots, n\} \) such that

\[\sum_{i \in S} w_i \leq W \quad \text{and} \quad \sum_{i \in S} v_i \quad \text{is maximized} \]
0-1 Knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value \(v_i \)
2. Greedy by least weight \(w_i \)
3. Greedy by largest value density \(\frac{v_i}{w_i} \)

All three approaches generate feasible solutions. However, cannot guarantee to always generate an optimal solution!
0-1 Knapsack problem revisited

Example:

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
<th>v_i/w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total weight $W = 5$

Greedy by value density v_i/w_i:
- take items 1 and 2.
- value = 16, weight = 3

Optimal solution – *by inspection*
- take items 2 and 3.
- value = 22, weight = 5
0-1 Knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let \(i_k \) be the highest-numberd item in an optimal solution \(S = \{i_1, \ldots, i_k\} \), Then

1. \(S' = S - \{i_k\} \) is an optimal solution for weight \(W - w_{i_k} \) and items \(\{i_1, \ldots, i_{k-1}\} \)

2. the value of the solution \(S \) is

\[
v_{i_k} + \text{the value of the subproblem solution } S'
\]
0-1 Knapsack problem revisited

Define
\[c[i, w] = \text{value of an optimal solution for items } \{1, \ldots, i\} \]
and maximum weight \(w \).

Then when \(i > 0 \) and \(w_i > w \), the weight of item \(i \) is larger than the weight limit \(w \), and
\[c[i, w] = c[i - 1, w] \]

When \(i > 0 \) and \(w_i \leq w \), we have two choices:

- **Choice 1:** includes item \(i \), in which case it is \(v_i \) plus a subproblem solution for \(i - 1 \) items and the weight excluding \(w_i \)
- **Choice 2:** does not include item \(i \), in which case it is a subproblem solution of \(i - 1 \) items and the same weight.

The better of these two choices should be made.

Mathematically, that is

\[
c[i, w] = \max \left\{ v_i + c[i - 1, w - w_i], \quad \begin{array}{c}
\text{choice 1} \\
\text{choice 2}
\end{array} c[i - 1, w] \right\}
\]
0-1 Knapsack problem revisited

- In summary,

\[c[i, w] = \begin{cases}
0 & \text{if } i = 0 \text{ or } w = 0 \\
 c[i - 1, w] & \text{if } i > 0 \text{ and } w_i > W \\
 \max \{v_i + c[i - 1, w - w_i], c[i - 1, w]\} & \text{if } i > 0 \text{ and } w_i \leq W
\end{cases} \]

- The set of items to take can be deduced from the \(c \)-table by starting at \(c[n, W] \) and tracing where the optimal values came from.
 - If \(c[i, w] = c[i - 1, w] \), item \(i \) is not part of the solution, and we continue tracing with \(c[i - 1, w] \).
 - Otherwise item \(i \) is part of the solution, and we continue tracing with \(c[i - 1, w - w_i] \).

- Running time: \(\Theta(nW) \):
 - \(\Theta(nW) \) to fill in the \(c \) table
 - \((n + 1)(W + 1) \) entries each requiring \(\Theta(1) \) time
 - \(O(n) \) time to trace the solution
 - starts in row \(n \) and moves up 1 row at each step.
0-1 Knapsack problem revisited

Example:

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
<th>v_i/w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total weight $W = 5$

By dynamic programming, we generate the following c-table:

<table>
<thead>
<tr>
<th>i \ w</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

By the table, we have

- The items to take: $S = \{3, 2\}$
0-1 Knapsack problem revisited

Example: We have \(n = 9 \) items with

- value \(= v = [2, 3, 3, 4, 4, 5, 7, 8, 8] \)
- weight \(= w = [3, 5, 7, 4, 3, 9, 2, 11, 5] \);
- Total allowable weight \(W = 15 \)

DP generates the following \(c \)-table:

<table>
<thead>
<tr>
<th>(i/w)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

By the table, we have

- Optimal value \(= c[n, W] = c[9, 15] = 23 \).
- The set of items to take \(S = \{9, 7, 5, 4\} \).