Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G = (V, E, w)$
- Weight function $w : E \rightarrow \mathbb{R}$
- Spanning tree: a tree that connects all vertices
- Minimum Spanning Tree (MST) T:

$$w(T) = \sum_{(u,v) \in T} w(u,v) \text{ is minimized}$$

- MST is not necessarily unique
 For simplicity in theory, assume all edge weight distinct, and therefore, has a unique MST.
MST

Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding
MST

Two basic properties:

1. **Optimal substructure**: optimal tree contains optimal subtrees.

 Let T be a MST of $G = (V, E)$. Removing (u, v) of T partitions T into two trees T_1 and T_2. Then T_1 is a MST of $G_1 = (V_1, E_1)$ and T_2 is a MST of $G_2 = (V_2, E_2)$.\(^1\)

 Proof. Note that

 $$w(T) = w(T_1) + w(u, v) + w(T_2).$$

 There cannot be a better subtree than T_1 or T_2, otherwise T would be suboptimal.

\(^1\)The subgraph G_1 is induced by vertices in T_1, i.e., $V_1 = \{ \text{vertices in } T_1 \}$ and $E_1 = \{(x, y) \in E; x, y \in V_1 \}$. Similarly for G_2.
2. Greedy-choice property:

Let T be a MST of $G = (V, E)$, $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and $V - A$. Then $(u, v) \in T$.\(^2\)

Proof. If $(u, v) \notin T$, then

- $(u, v) \cup T$ forms a cycle,
- replace one of edges of T by (u, v) form a new tree T
- this is contradiction to T is MST

\(^2\)Note: there is an abuse of notation here that we will view A as being both edges and vertices.
MST

Prim’s algorithm

- Basic idea:
 - builds one tree, so that \(A \) is always a tree
 - starts from a root \(r \)
 - at each step, find the next lightest edge crossing cut \((A, V - A)\) and add this edge to \(A \) ("greedy choice")

- How to find the next lightest edge quickly?

 Answer: use a priority queue
Review: Priority Queue

A priority queue maintains a set S of elements, each with an associated value called a “key”, and supports the following operations:

- **Search(S, k):**
 returns x in S with $\text{key}[x] = k$

- **Insert(S, x)/Delete(S, x):**
 inserts/deletes the element x into the set S

- **Maximum(S)/Minimum(S):**
 returns x in S with largest/smallest key

- **Extract-max(S)/Extract-min(S):**
 removes and returns x in S with largest/smallest key

- **Increase-key(S, x, k)/Decrease-key(S, x, k):**
 increases/decreases the value of element x’s key to the new value k

Recall that the priority queue has been used in Huffman coding.
MST

MST-Prim(G, w, r)
Q = empty
for each vertex u in V
 key[u] = infty
 pi[u] = Nil
 Insert(Q, u)
endfor
Decrease-key(Q,r,0)
while Q not empty
 u = Extract-Min(Q)
 for each v in Adj[u]
 if (v in Q) and (w(u,v) < key[v])
 Decrease-key(Q, v, w(u,v))
 pi[v] = u // parent of v
 endif
 endfor
endwhile
return A = { (v, pi[v]): v in V-{r} } // MST
Prim’s algorithm

1. Run and *illustrate* Prim’s algorithm

2. Running time:
 - depends on how the priority queue Q is implemented
 - Suppose Q is a binary heap (see Section 6.1)
 - Initialize Q and the first for loop: $O(|V| \log |V|)$
 - Decrease key of root r: $O(\log |V|)$
 - While-loop:
 - $|V|$ Extract-Min calls: $O(|V| \log |V|)$
 - $\leq |E|$ Decrease-Key calls: $O(|E| \log |E|)$
 - Total: $O(|E| \log |V|)$
 - *Note: G is connected, $\log |E| = \Theta(\log |V|)$*
MST

Kruskal’s algorithm

▶ Basic idea:
 ▶ scan edges in increasing of weight
 ▶ put edge in if no loop created

▶ Why does this result in MST?
 Answer: min-weight edge is always in MST (the greedy-choice property).

▶ Implementation data structure: disjoint-set
Review: Disjoint-Set

Disjoint-Set maintains a collection of \(S = \{ S_1, S_2, \ldots S_k \} \) of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.

A disjoint-set data structure supports the following operations:

- **Make-set(\(x \))**: creates a new set whose only member (and thus representative) is \(x \).
- **Union(\(x, y \))**: unites the sets that contain \(x \) and \(y \), say \(S_x \) and \(S_y \), into a new set that is the union of these two sets: \(S_x \cup S_y \). The representative is any member of \(S_x \cup S_y \).
- **Find-set(\(x \))**: returns (a pointer to) the representative of the (unique) set containing \(x \).

To learn more about the disjoint-set data structure, see Chapter 21.
MST

MST-Kruskal(G, w)
A = empty
for each vertex v in V
 Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
 if Find-set(u) \= Find-set(v)
 A = A U {(u,v)}
 Union(u,v)
 endif
endfor
return A
MST

Kruskal’s algorithm

1. Run and *illustrate* Prim’s algorithm

2. Running time:
 - depends on the implementation of the disjoint-set
 - Sort: $\Theta(|E| \lg |E|)$
 - $|V|$ Make-Set ops
 - $2|E|$ Find-Set ops
 - $|V| - 1$ Union ops
 - Total: $O(|E| \lg |V|)$
 - *Note:* G is connected, $\lg |E| = \Theta(\lg |V|)$