Minimum Spanning Tree (MST)

- Undirected connected graph $G = (V, E)$
- Weight function $w : E \rightarrow \mathbb{R}$

- Spanning tree: a tree that connects all vertices
- Minimum Spanning Tree T:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

- MST is not necessarily unique
Basic idea of “growing” a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding
MST

Basic properties:

- **Optimal substructure**: optimal tree contains optimal subtrees.

Let T be a MST of $G = (V, E)$. Removing (u,v) of T partitions T into two trees T_1 and T_2. Then T_1 is a MST of $G_1 = (V_1, E_1)$ and T_2 is a MST of $G_2 = (V_2, E_2)$.1

Proof. Note that

$$w(T) = w(T_1) + w(u, v) + w(T_2).$$

There cannot be a better subtree than T_1 or T_2, otherwise T would be suboptimal.

1The subgraph G_1 is induced by vertices in T_1, i.e., $V_1 = \{\text{vertices in } T_1\}$ and $E_1 = \{(x, y) \in E; x, y \in V_1\}$. Similarly for G_2.

MST

Basic properties:

- **Greedy-choice property:**

 Let T be a MST of $G = (V, E)$, $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and $V - A$. Then $(u, v) \in T$.

 Proof. If $(u, v) \notin T$, then

 - $(u, v) \cup T$ forms a cycle,
 - replace one of edges of T by (u, v) form a new tree T
 - this is contradiction to T is MST

\(^2\)Note: there is an abuse of notation here that we will view A as being both edges and vertices.
MST

Prim’s algorithm

- Basic idea:
 - builds one tree, so that A is always a tree
 - starts from a root r
 - at each step, find the next lightest edge crossing cut $(A, V - A)$ and add this edge to A ("greedy choice")

- How to find the next lightest edge quickly?

 Answer: use a priority queue
Review: Priority Queue

A priority queue maintains a set S of elements, each with an associated value called a “key”, and supports the following operations:

- **Search(S, k):** returns x in S with $\text{key}[x] = k$
- **Insert(S, x)/Delete(S, x):** inserts/deletes the element x into the set S
- **Maximum(S)/Minimum(S):** returns x in S with largest/smallest key
- **Extract-max(S)/Extract-min(S):** removes and returns x in S with largest/smallest key
- **Increase-key(S, x, k)/Decrease-key(S, x, k):** increases/decreases the value of element x’s key to the new value k

Recall that the priority queue has been used in Huffman coding.
MST

MST-Prim(G, w, r)

Q = empty

for each vertex u in V
 key[u] = infty
 pi[u] = Nil
 Insert(Q, u)

endfor

Decrease-key(Q, r, 0)

while Q not empty
 u = Extract-Min(Q)
 for each v in Adj[u]
 if (v in Q) and (w(u,v) < key[v])
 Decrease-key(Q, v, w(u,v))
 pi[v] = u // parent of v
 endif
 endfor

endwhile

return A = { (v, pi[v]): v in V-{r} } // MST
MST

Prim’s algorithm – running time:

- depends on how the priority queue Q is implemented
- Suppose Q is a binary heap (see Section 6.1)
 - Initialize Q and the first for loop: $O(|V| \lg |V|)$
 - Decrease key of root r: $O(\lg |V|)$
 - While-loop:
 - a) $|V|$ Extract-Min calls: $O(|V| \lg |V|)$
 - b) $\leq |E|$ Decrease-Key calls: $O(|E| \lg |E|)$
- Total: $O(|E| \lg |V|)$

Note: G is connected, $\lg |E| = \Theta(\lg |V|)$
MST

Kruskal’s algorithm

- **Basic idea:**
 - scan edges in increasing of weight
 - put edge in if no loop created

- Why does this result in MST?
 Answer: min-weight edge is always in MST (the greedy-choice property).

- Implementation data structure: **disjoint-set**
Review: Disjoint-Set

Disjoint-Set maintains a collection of \(S = \{ S_1, S_2, \ldots S_k \} \) of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.

A disjoint-set data structure supports the following operations:

- **Make-set(\(x \)):**
 creates a new set whose only member (and thus representative) is \(x \).

- **Union(\(x, y \)):**
 unites the sets that contain \(x \) and \(y \), say \(S_x \) and \(S_y \), into a new set that is the union of these two sets: \(S_x \cup S_y \). The representative is any member of \(S_x \cup S_y \).

- **Find-set(\(x \)):**
 returns (a pointer to) the representative of the (unique) set containing \(x \).

To learn more about the disjoint-set data structure, see Chapter 21.
MST

MST-Kruskal(G, w)
A = empty
for each vertex v in V
 Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
 if Find-set(u) \= Find-set(v)
 A = A U {(u,v)}
 Union(u,v)
 endif
endfor
return A
MST

Kruskal’s algorithm – running time:

- depends on the implementation of the disjoint-set
- Sort: $\Theta(|E| \lg |E|)$
- $|V|$ Make-Set ops
- $2|E|$ Find-Set ops
- $|V| - 1$ Union ops
- Total: $O(|E| \lg |V|)$

Note: G is connected, $\lg |E| = \Theta(\lg |V|)$