IV. Divide-and-Conquer Algorithms
Divide-and-Conquer algorithms – Overview

The divide-and-conquer strategy solves a problem by

- Breaking it into subproblems that are themselves smaller instances of the same type of problem ("divide"),
- Recursively solving these subproblems ("conquer"),
- Appropriately combining their answers ("combine")

Recall that the merge sort serves as an example of the divide-and-conquer paradigm.
The Maximum-subarray Problem

Problem:

Input: an array $A[1...n]$ of (positive/negative) numbers.

Output: Indices i and j such that $A[i...j]$ has the greatest sum of any nonempty, contiguous subarray of A, along with the sum of the values in $A[i...j]$.

Note: Maximum subarray might not be unique, though its value is, so we speak of a maximum subarray, rather than the maximum subarray.
The Maximum-subarray Problem

Example 1:

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Change $A[...]$</td>
<td>1</td>
<td>-4</td>
<td>3</td>
<td>-4</td>
<td></td>
</tr>
</tbody>
</table>

maximum-subarray: $A[3]$ ($i = j = 3$), Sum = 3

Example 2:

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Change $A[...]$</td>
<td>1</td>
<td>-4</td>
<td>3</td>
<td>4</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

maximum-subarray: $A[3...6]$ ($i = 3, j = 6$), Sum = 11.
The Maximum-subarray Problem

Solve by brute-force:

- Total number of subarrays $A[i...j]$:

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{1}{2}n(n-1) = \Theta(n^2)$$

plus the arrays of length $= 1$.

- Check all subarrays: $\Theta(n^2)$
The Maximum-subarray Problem

Solve by Divide-and-Conquer:

- **Subproblem:** Find a maximum subarray of $A[low...high]$
- **Divide-and-conquer algorithm**
 1. **Divide:** the (sub)array into two subarrays of as equal size as possible by finding the midpoint mid
 2. **Conquer:**
 (a) finding maximum subarrays of $A[low...mid]$ and $A[mid + 1...high]$
 (b) finding a max-subarray that crosses the midpoint
 3. **Combine:** returning the max of the three

- This strategy works because any subarray must either lie entirely in one side of midpoint or cross the midpoint.
The Maximum-subarray Problem

MaxSubarray(A, low, high)
if high == low // base case: only one element
 return (low, high, A[low])
else
 // divide
 mid = floor((low + high)/2)
 // conquer
 (leftlow, lefthigh, leftsum) = MaxSubarray(A, low, mid)
 (rightlow, righthigh, rightsum) = MaxSubarray(A, mid+1, high)
 (xlow, xhigh, xsum) = MaxXingSubarray(A, low, mid, high)
 // combine
 if leftsum >= rightsum and leftsum >= xsum
 return (leftlow, lefthigh, leftsum)
 else if rightsum >= leftsum and rightsum >= xsum
 return (rightlow, righthigh, rightsum)
 else
 return (xlow, xhigh, xsum)
end if
end if
The Maximum-subarray Problem

MaxXingSubarray(A, low, mid, high)

leftsum = -infty; sum = 0 // Find max-subarray of A[i..mid]
for i = mid downto low
 sum = sum + A[i]
 if sum > leftsum
 leftsum = sum
 maxleft = i
 end if
end for

rightsum = -infty; sum = 0 // Find max-subarray of A[mid+1..j]
for j = mid+1 to high
 sum = sum + A[j]
 if sum > rightsum
 rightsum = sum
 maxright = j
 end if
end for

// Return the indices i and j and the sum of two subarrays
return (maxleft, maxright, leftsum + rightsum)
The Maximum-subarray Problem

Remarks:

1. Initial call: MaxSubarray(A,1,n)
2. Base case is when the subarray has only 1 element.
3. Divide by computing mid. Conquer by the two recursive calls to MaxSubarray. and a call to MaxXingSubarray. Combine by determining which of the three results gives the maximum sum.
4. Complexity:

\[
T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) + \Theta(1) \\
= \Theta(n \lg n)
\]

5. Question: What does MaxSubarray returns when all elements of A are negative?