1. Introduction – Recap

1. Tractable and intractable problems
 polynomial-boundness: $O(n^k)$

2. NP-complete problems – *informal definition*

3. Examples of P vs. NP
 difference may appear “*only slightly*”

4. Optimization problems and decision problems
2. P and NP

- An algorithm is said to be *polynomial bounded* if its worst-case complexity $T(n)$ is bounded by a polynomial function of the input size n:

 $$T(n) = O(n^k).$$

Examples: algorithms for LCS, shortest path, MST, Euler cycle, circuit value.

- $\mathbf{P} =$ the class of decision problems that can be *solved* in polynomial time, i.e., they are polynomial bounded
2. P and NP

- **NP** = the class of decision problems that are *verifiable* in polynomial time.

 i.e., if we were given a "certificate" (= a solution), then we could *verify* that whether the certificate (the solution) is correct in polynomial time.

- Examples:
 - Circuit-SAT
 - Hamiltonian cycle
 - Graph coloring

- **NP** stands for "Nondeterministic Polynomial time".
2. P and NP

- $P \subseteq NP$

 since if a problem is in P, then we can solve it in polynomial time without even being given a certificate.

- Open problem:

 Does $P \subset NP$ or $P = NP$?

- See http://www.claymath.org/millennium-problems
2. P and NP

- The size of the input can change the classification of P or NP.

- Examples:
 - Prime-testing problem:
 \[O(n) \xrightarrow{n=10^m} O(10^m) \]
 - Knapsack problem
 \[O(nW) \xrightarrow{W=10^m} O(n \cdot 10^m) \]

- Knowing the effect on complexity of the size of the input is important.

- Unfortunately, even with strong restrictions on the inputs, many NPC problems are still NPC.

 Example: 3-CNF SAT problem\(^1\)

\(^1\)CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\(\land\)) operator. A clause is a sequence of Boolean variables separated by the Boolean OR (\(\lor\)) operator.
2. P and NP – recap

1. P and NP: formal definitions
2. Open problem: whether or not P is a proper subset of NP
3. The size of the input can change the classification of P or NP
 However, even with strong restrictions on the inputs, many NPC problems are still NPC.
3. NP-complete

NP-complete (NPC) is the term used to describe decision problems that are the *hardest* ones in NP in the following sense:

If there were a polynomial-bounded algorithm for an NPC problem, then there would be a polynomial-bounded time for each problem in NP.
3. NP-complete

Formal definition:

- A decision problem A is **NP-complete (NPC)** if

 (1) $A \in \text{NP}$ and

 (2) every other problems B in NP is *polynomially reducible* to A, denoted as

 $$B \leq_T A$$

If a problem satisfies the property (2), but not necessarily the property (1), we say the problem is **NP-hard**.\(^2\)

\(^2\)Note: “NP-hard” does not mean “in NP and hard”. It means “at least as hard as any problem in NP”. Thus a problem can be NP-hard and not be in NP.
3. NP-complete

Polynomial reduction $B \leq_T A$

- Let A and B be two decision problems, B is polynomially reducible to A, if there is a poly-time computable transformation T such that

$$\text{Yes-instance of } A \iff \text{Yes-instance of } B$$
3. NP-complete

- Cook’s theorem (1971):³
 Circuit-SAT is NPC.

- Known NPC problems:
 - Graph coloring
 - Hamiltonian cycle
 - TSP
 - Knapsack
 - ... see next page for more.

³First result demonstrating that a specific problem is NPC.
3. NP-complete

- Known NPC problems — more
 - Subset sum:
 Given a positive integer c, and a set $S = \{s_1, s_2, \ldots, s_n\}$ of positive integers s_i for $i = 1, 2, \ldots, n$. Assume that $\sum_{i=1}^{n} s_i \geq c$. Is there a subset $J \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in J} s_i = c$.

- Bin packing problem:
 Suppose we have an unlimited number of bins, each of capacity 1, and n objects with sizes s_1, s_2, \ldots, s_n, where $0 < s_i \leq 1$. Determine the smallest number of bins into which objects can be packed.

- Vertex cover problem:
 A vertex-cover of an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$. The vertex-cover optimization problem is to find a vertex cover of minimum size.

- Clique problem:
 A clique in an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ such that each pair of V' is connected by an edge in E. The clique optimization problem is to find a clique of maximum size.
3. NP-complete

P, NP and NPC:

- How most theoretical computer scientists view the relationships among P, NP and NPC:
 - Both P and NPC are wholly contained within NP
 - \(P \cap NPC = \emptyset \)
3. NP-complete – Recap

1. NP-complete (NPC): formal definition
2. Polynomial reduction
3. Cook’s theorem
4. Examples of known NPC problems