4. How to prove a problem is NPC

Recall

- A decision problem A is **NP-complete (NPC)** if

 1. $A \in \text{NP}$ and
 2. every other problems B in NP is *polynomially reducible* to A, denoted as

 $$B \leq_T A$$
4. How to prove a problem is NPC

Recall

Polynomial reduction $B \leq_T A$

Let A and B be two decision problems, B is polynomially reducible to A, if there is a poly-time computable transformation T such that

Yes-instance of $A \iff$ Yes-instance of B
4. How to prove a problem is NPC

- The reducibility relation “≤ₜ” is transitive, i.e,

\[A \leqₜ B \quad \text{and} \quad B \leqₜ C \quad \text{imply} \quad A \leqₜ C \]

- Therefore, to prove that a problem \(A \) is NPC:
 1. show that \(A \in \text{NP} \)
 2. choose some known NPC problem \(B \)
 - define a polynomial transformation \(T \) from \(B \) to \(A \)
 - show that \(B \leqₜ A \)

- Why sufficient? the logic is as follows:

Since \(B \) is NPC, all problems in NP is reducible to \(B \).
Show \(B \) is reducible to \(A \).
Then all problems in NP is reducible to \(A \).
Therefore, \(A \) is NPC
4. How to prove a problem is NPC

Example 1:
Prove that Undirected HC is NPC.

Proof:
- (1) undirected HC is in NP
- (2)
 - The directed HC is known to be NPC (taken as a fact)
 - Next we show that

\[
\text{directed HC} \leq_T \text{undirected HC}
\]

- By (1) and (2), we conclude that the undirected HC is NPC.
4. How to prove a problem is NP-complete

Example 1, cont’d:
Show that

\[
\text{directed } \text{HC} \leq_T \text{undirected } \text{HC}
\]

- Define transformation:

 Let \(G = (V, E) \) be a directed graph. Define \(G' \) to the undirected graph \(G' = (V', E') \) by the following transformation \(T \):

 - \(v \in V \rightarrow v^1, v^2, v^3 \in V' \) and \((v^1, v^2), (v^2, v^3) \in E' \)

 - \((u, v) \in E \rightarrow (u^3, v^1) \in E' \)

- \(T \) is polynomial-time computable.

- Now, we just need to show that

 \(G \) has a HC \(\iff \) \(G' \) has a HC.
4. How to prove a problem is NPC

Example 1, cont’d

“⇒” Suppose that \(G \) has a directed HC: \(v_1, v_2, \ldots, v_n, v_1 \)
Then
\[
v_{1}^{1}, v_{1}^{2}, v_{1}^{3}, v_{2}^{1}, v_{2}^{2}, v_{2}^{3}, \ldots, v_{n}^{1}, v_{n}^{2}, v_{n}^{3}, v_{1}^{1}
\]
is an undirected HC for \(G' \).

“⇐” 1. Suppose that \(G' \) has an undirected HC, the three vertices \(v^1, v^2, v^3 \) that correspond to one vertex from \(G \) must be traversed \textbf{consecutively} in the order \(v^1, v^2, v^3 \) or \(v^3, v^2, v^1 \), since \(v^2 \) cannot be reached from any other vertex in \(G' \).
2. Since the other edges in \(G' \) connect vertices with superscripts 1 or 3, if for any one triple the order of the superscripts is 1, 2, 3, then the order is 1, 2, 3 for all triples. Otherwise, it is 3, 2, 1 for all triples.
3. Therefore, we may assume that the undirected HC of \(G' \) is
\[
\underbrace{v_{i_{1}}^{1}, v_{i_{1}}^{2}, v_{i_{1}}^{3}}_{i_{1}}, \underbrace{v_{i_{2}}^{1}, v_{i_{2}}^{2}, v_{i_{2}}^{3}}_{i_{2}}, \ldots, \underbrace{v_{i_{n}}^{1}, v_{i_{n}}^{2}, v_{i_{n}}^{3}}_{i_{n}}, v_{i_{1}}^{1}.
\]
Then
\[
v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}, v_{i_{1}}\text{ is a directed HC for } G.
\]
4. How to prove a problem is NPC

Example 2: Show that

\[
\text{Subset-Sum} \leq_T \text{Set-Partition}
\]

Since Subset-Sum is known to be NPC, the above reduction implies that Set-Partition is also NPC.

Subset-Sum decision problem:

Given a positive integer \(c \), and a set \(S = \{s_1, s_2, \ldots, s_n\} \) of positive integers \(s_i \) for \(i = 1, 2, \ldots, n \). Is there a \(J \subseteq \{1, 2, \ldots, n\} \) such that \(\sum_{i \in J} s_i = c \)? Assume that \(w = \sum_{i=1}^{n} s_i \geq c \).

Set-Partition decision problem:

Given a set \(S \) of numbers. Can \(S \) be partitioned into two sets \(A \) and \(\bar{A} = S - A \) such that \(\sum_{x \in A} x = \sum_{x \in \bar{A}} x \)?
4. How to **prove** a problem is NPC

Example 2, cont’d

- Let \(S \) be an instance of Subset-Sum with \(w = \sum_{s_i \in S} s_i \) and the target \(c \).

- Define the set \(S' \) (i.e., the transformation \(T \) from \(S \) to \(S' \)) as follows:

 \[
 S' = S \cup \{u, v\}, \quad \text{where} \quad u = 2w - c, \quad v = w + c.
 \]

- Next to show that

 Yes of Subset-Sum of \(S \) \(\iff \) Yes of Set-Partition of \(S' \)
4. How to prove a problem is NPC

Example 2, cont’d

⇒ Let $J \subseteq S$ and the elements in J sum to c. Then $J \cup \{u\}$ sum to $2w$. Note that the elements in $\overline{J} = S - J$ sum to $w - c$. Hence, $\overline{J} \cup \{v\}$ also sums to $2w$. Therefore, S' can be partitioned into $J \cup \{u\}$ and $\overline{J} \cup \{v\}$ where both partitions sum to $2w$. Thus, Yes of Subset-Sum transforms to a Yes of Set-Partition.
4. How to prove a problem is NPC

Example 2, cont’d

⇐ Assume S' can be partitioned into two sets, T and $\overline{T} = S' - T$, such that

\[
\sum_{x \in T} x = \sum_{x \in \overline{T}} x. \tag{1}
\]

Since $w + u + v = 4w$, the sum of the elements in both sets must be equal to $2w$. Therefore, u must be in one set and v must be in the other because $u + v = 3w$. Without loss of generality, let $u \in T$. Then

\[
2w = \sum_{x \in T} x = u + \sum_{x \in T - u} x = 2w - c + \sum_{x \in T - u} x.
\]

It implies that

\[
\sum_{x \in T - u} x = c
\]

Thus, Yes of Set-Partition *transforms* to Yes of Subset-Sum.
4. How to prove a problem is NPC

Additional examples/exercises:

- **Example 3:**
 Graph 3-COLOR \leq_T 4-COLOR (*homework 8*)

- **Example 4:**
 Subset Sum \leq_T Job Scheduling (*handout*)