V. Greedy Algorithms
Greedy algorithms – Overview

- Algorithms for solving (optimization) problems typically go through a sequence of steps, with a set of choices at each step.
Greedy algorithms – Overview

- Algorithms for solving (optimization) problems typically go through a sequence of steps, with a set of choices at each step.

- A greedy algorithm always makes the choice that looks best at the moment, without regard for future consequence, i.e., “take what you can get now” strategy.
Greedy algorithms – Overview

- Algorithms for solving (optimization) problems typically go through a sequence of steps, with a set of choices at each step.

- A greedy algorithm always makes the choice that looks best at the moment, without regard for future consequence, i.e., “take what you can get now” strategy

- Greedy algorithms do not always yield optimal solutions,

 \[
 \text{Local optimum } \iff \text{ Global optimum}
 \]

 but for many problems they do.
Activity-selection problem

Problem statement:

Input: Set $S = \{1, 2, \ldots, n\}$ of n activities

$s_i =$ start time of activity i

$f_i =$ finish time of activity i

Output: Maximum-size subset $A \subseteq S$ of compatible activities

Remarks:

▶ Activities i and j are compatible if the intervals (s_i, f_i) and (s_j, f_j) do not overlap.

▶ Without loss of generality, assume $f_1 \leq f_2 \leq \cdots \leq f_n$.
Activity-selection problem

Problem statement:

Input: Set $S = \{1, 2, \ldots, n\}$ of n activities
- $s_i =$ start time of activity i
- $f_i =$ finish time of activity i

Remarks:
- Activities i and j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.
- Without loss of generality, assume $f_1 \leq f_2 \leq \cdots \leq f_n$.

Activity-selection problem

Problem statement:

Input: Set $S = \{1, 2, \ldots, n\}$ of n activities

- $s_i = \text{start time of activity } i$
- $f_i = \text{finish time of activity } i$

Output: Maximum-size subset $A \subseteq S$ of compatible activities
Activity-selection problem

Problem statement:

\textbf{Input:} Set $S = \{1, 2, \ldots, n\}$ of n activities

\begin{align*}
 s_i &= \text{start time of activity } i \\
 f_i &= \text{finish time of activity } i
\end{align*}

\textbf{Output:} Maximum-size subset $A \subseteq S$ of \textit{compatible} activities

Remarks:

- Activities i and j are \textit{compatible} if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.
Activity-selection problem

Problem statement:

Input: Set $S = \{1, 2, \ldots, n\}$ of n activities
$s_i = \text{start time of activity } i$
$f_i = \text{finish time of activity } i$

Output: Maximum-size subset $A \subseteq S$ of compatible activities

Remarks:
- Activities i and j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.
- Without loss of generality, assume

$$f_1 \leq f_2 \leq \cdots \leq f_n$$
Activity-selection problem

Example

<table>
<thead>
<tr>
<th></th>
<th>s_i</th>
<th>f_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>
Activity-selection problem

Example

<table>
<thead>
<tr>
<th>i</th>
<th>s_i</th>
<th>f_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

$A = \{1, 4, 8, 11\}$ is an optimal (why?) solution.
Activity-selection problem

Example

<table>
<thead>
<tr>
<th>i</th>
<th>s_i</th>
<th>f_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

$A = \{1, 4, 8, 11\}$ is an optimal (why?) solution.

$A = \{2, 4, 9, 11\}$ is also an optimal solution.
Activity-selection problem

Greedy algorithm:

- pick the compatible activity with the earliest finish time.
Activity-selection problem

Greedy algorithm:

- *pick the compatible activity with the earliest finish time.*

Why?

- Intuitively, this choice leaves as much opportunity as possible for the remaining activities to be scheduled
Activity-selection problem

Greedy algorithm:

- pick the compatible activity with the earliest finish time.

Why?

- Intuitively, this choice leaves as much opportunity as possible for the remaining activities to be scheduled.

- That is, the greedy choice is the one that maximizes the amount of unscheduled time remaining.
Activity-selection problem

Greedy_Activity_SELECTOR(s, f)
$n = \text{length}(s)$
$A = \{1\}$
$j = 1$

for $i = 2$ to n
 if $s[i] \geq f[j]$
 $A = A \cup \{i\}$
 $j = i$
 end if
end for
return A

Remarks
▶ Assume the array f already sorted
▶ Complexity: $T(n) = O(n)$
Activity-selection problem

Greedy_Activity_Selector(s,f)
n = length(s)
A = {1}
j = 1
for i = 2 to n
 if s[i] >= f[j]
 A = A U {i}
 j = i
 end if
end for
return A

Remarks

▶ Assume the array f already sorted
▶ Complexity: $T(n) = O(n)$
Activity-selection problem

Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>s_i</td>
<td>f_i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Solution

$A = \{1, 4, 8, 11\}$ by Greedy Activity Selector.
Activity-selection problem

Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>s_i</td>
<td>f_i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Solution $A = \{1, 4, 8, 11\}$ by Greedy_Activity_Selector.
Activity-selection problem

Question: Does $\text{Greedy_Activity_Selector}$ work?
Activity-selection problem

Question: Does `Greedy_Activity_SELECTOR` work?
Answer: Yes!
Activity-selection problem

Question: Does \texttt{Greedy_Activity_Selector} work?
Answer: Yes!

\textbf{Theorem.} Algorithm \texttt{Greedy_Activity_Selector} produces a solution of the activity-selection problem.
Activity-selection problem

The proof of **Theorem** is based on the following two properties:

Property 1. There exists an optimal solution A such that the greedy choice "1" in A.

Proof:

1. Let's order the activities in A by finish time such that the first activity in A is "k_1".
2. If $k_1 = 1$, then A begins with a greedy choice.
3. If $k_1 \neq 1$, then let $A' = (A - \{k_1\}) \cup \{1\}$.

Then:

1. The sets $A - \{k_1\}$ and $\{1\}$ are disjoint.
2. The activities in A' are compatible.
3. A' is also optimal, since $|A'| = |A|$.

Therefore, we conclude that there always exists an optimal solution that begins with a greedy choice.
Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice “1” in A.

Proof:

- Let's order the activities in A by finish time such that the first activity in A is k_1.

 - If $k_1 = 1$, then A begins with a greedy choice.

 - If $k_1 \neq 1$, then let $A' = (A - \{k_1\}) \cup \{1\}$.

 1. The sets $A - \{k_1\}$ and $\{1\}$ are disjoint.

 2. The activities in A' are compatible.

 3. A' is also optimal, since $|A'| = |A|$.

Therefore, we conclude that there always exists an optimal solution that begins with a greedy choice.
Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.
There exists an optimal solution A such that the greedy choice “1” in A.

Proof:
- let’s order the activities in A by finish time such that the first activity in A is “k_1”.

\therefore Therefore, we conclude that there always exists an optimal solution that begins with a greedy choice.
Activity-selection problem

The proof of **Theorem** is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice “1” in A.

Proof:

- Let's order the activities in A by finish time such that the first activity in A is “k_1”.
- If $k_1 = 1$, then A begins with a greedy choice
Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice "1" in A.

Proof:

- let's order the activities in A by finish time such that the first activity in A is \(k_1 \).
- If $k_1 = 1$, then A begins with a greedy choice.
- If $k_1 \neq 1$, then let $A' = (A - \{k_1\}) \cup \{1\}$.
Activity-selection problem

The proof of **Theorem** is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice “1” in A.

Proof:

- **let's order the activities in A by finish time such that the first activity in A is “k₁”**.
- **If k₁ = 1, then A begins with a greedy choice**
- **If k₁ ≠ 1, then let A' = (A − {k₁}) ∪ {1}**. Then
 1. the sets A − {k₁} and {1} are disjoint
Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice “1” in A.

Proof:

- Let’s order the activities in A by finish time such that the first activity in A is “k_1”.
- If $k_1 = 1$, then A begins with a greedy choice.
- If $k_1 \neq 1$, then let $A' = (A - \{k_1\}) \cup \{1\}$.

Then

1. the sets $A - \{k_1\}$ and $\{1\}$ are disjoint
2. the activities in A' are compatible
Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice “1” in A.

Proof:

- let's order the activities in A by finish time such that the first activity in A is “k_1”.
- If $k_1 = 1$, then A begins with a greedy choice
- If $k_1 \neq 1$, then let $A' = (A - \{k_1\}) \cup \{1\}$.

Then
1. the sets $A - \{k_1\}$ and $\{1\}$ are disjoint
2. the activities in A' are compatible
3. A' is also optimal, since $|A'| = |A|$
Activity-selection problem

The proof of **Theorem** is based on the following two properties:

Property 1.

There exists an optimal solution \(A \) such that the greedy choice “1” in \(A \).

Proof:

- Let's order the activities in \(A \) by finish time such that the first activity in \(A \) is “1”.
- If \(k_1 = 1 \), then \(A \) begins with a greedy choice.
- If \(k_1 \neq 1 \), then let \(A' = (A - \{ k_1 \}) \cup \{ 1 \} \).

 Then

 1. the sets \(A - \{ k_1 \} \) and \(\{ 1 \} \) are disjoint
 2. the activities in \(A' \) are compatible
 3. \(A' \) is also optimal, since \(|A'| = |A| \)

Therefore, we conclude that there always exists an optimal solution that begins with a greedy choice.
Activity-selection problem

Property 2.

If A is an optimal solution, then $A' = A - \{1\}$ is an optimal solution to $S' = \{i \in S, s[i] \geq f[1]\}$.
Activity-selection problem

Property 2.

If \(A \) is an optimal solution, then \(A' = A - \{1\} \) is an optimal solution to \(S' = \{i \in S, s[i] \geq f[1]\} \).

Proof: By contradiction. If there exists \(B' \) to \(S' \) such that \(|B'| > |A'| \), then let

\[B = B' \cup \{1\}, \]

we have

\[|B| > |A|, \]

which is contradicting to the optimality of \(A \).
Activity-selection problem

Proof of **Theorem**: By Properties 1 and 2, we know that

- After each greedy choice is made, we are left with an optimization problem of the same form as the original.
Activity-selection problem

Proof of **Theorem**: By Properties 1 and 2, we know that

- After each greedy choice is made, we are left with an optimization problem of the same form as the original.
- *By induction* on the number of choices made, making the greedy choice at every step produces an optimal solution.

Therefore, the **Greedy_Activity_Selector** produces an optimal solution of the activity-selection problem.
Activity-selection problem

- Property 1 is called the **greedy-choice property**, generally casted as

 a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
Activity-selection problem

- Property 1 is called **the greedy-choice property**, generally casted as

 a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

- Property 2 is called **the optimal substructure property**, generally casted as

 an optimal solution to the problem contains within it optimal solution to subprograms.

These are **two key properties** for the success of greedy algorithms!