The closest pair point

Problem statement:

Given a set of \(n \) points on a line (1-dimensional, unsorted), find two points whose distance is shortest.
The closest pair point

Problem statement:

Given a set of \(n \) points on a line (1-dimensional, unsorted), find two points whose distance is shortest.

Remark:

- The problem is known as the closest pair problem in 1-dimension. Section 33.4 provides an algorithm for finding the closest pair of points in 2-dimension, i.e., on a plane, by extending the DC strategy we study here.
The closest pair point

A **brute-force** solution

- Pick two of \(n \) points and compute the distance
The closest pair point

A **brute-force** solution

- Pick two of \(n \) points and compute the distance

Cost:

\[
T(n) = \binom{n}{2} = \frac{n!}{2!(n-2)!} = \Theta(n^2).
\]
The closest pair point

Algorithm 1

1. Sort the points, say Merge Sort
2. Perform a linear scan

Remarks:
▶ Cost: $\Theta(n \log n) + \Theta(n) = \Theta(n \log n)$
▶ Unfortunately, the algorithm cannot be extended to the 2-dimension case.
The closest pair point

Algorithm 1
1. Sort the points, say Merge Sort
2. Perform a linear scan

Remarks:
- Cost: $\Theta(n \log n) + \Theta(n) = \Theta(n \log n)$
The closest pair point

Algorithm 1

1. Sort the points, say Merge Sort
2. Perform a linear scan

Remarks:

- Cost: $\Theta(n \lg n) + \Theta(n) = \Theta(n \lg n)$
- Unfortunately, the algorithm cannot be extended to the 2-dimension case.
The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point $\text{mid} \in S$ into two sets S_1 and S_2 such that

$$p < q \quad \text{for all } p \in S_1 \text{ and } q \in S_2$$

For example, $\text{mid} \in S$ can be the median, found in $O(n)$.

The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. **Divide** the set S of n points by some point $mid \in S$ into two sets S_1 and S_2 such that

 \[p < q \quad \text{for all } p \in S_1 \text{ and } q \in S_2 \]

 For example, $mid \in S$ can be the median, found in $O(n)$.

2. **Conquer:**

 (a) finds the closest pair recursively on S_1 and S_2, gives us two closest pairs of points

 \[\{p_1, p_2\} \in S_1 \text{ and } \{q_1, q_2\} \in S_2 \]
The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. **Divide** the set \(S \) of \(n \) points by some point \(\text{mid} \in S \) into two sets \(S_1 \) and \(S_2 \) such that

\[
P < q \quad \text{for all } p \in S_1 \text{ and } q \in S_2
\]

For example, \(\text{mid} \in S \) can be the median, found in \(O(n) \).

2. **Conquer:**

 (a) finds the closest pair *recursively* on \(S_1 \) and \(S_2 \), gives us two closest pairs of points

\[
\{p_1, p_2\} \in S_1 \text{ and } \{q_1, q_2\} \in S_2
\]

 (b) finds the closest crossing pair \(\{p_3, q_3\} \) with \(p_3 \in S_1 \) and \(q_3 \in S_2 \).
The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. **Divide** the set S of n points by some point $mid \in S$ into two sets S_1 and S_2 such that

 $$p < q \quad \text{for all } p \in S_1 \text{ and } q \in S_2$$

 For example, $mid \in S$ can be the median, found in $O(n)$.

2. **Conquer:**
 (a) finds the closest pair recursively on S_1 and S_2, gives us two closest pairs of points

 $$\{p_1, p_2\} \in S_1 \text{ and } \{q_1, q_2\} \in S_2$$

 (b) finds the **closest crossing pair** $\{p_3, q_3\}$ with $p_3 \in S_1$ and $q_3 \in S_2$.

3. **Combine:** the closest pair in the set S is

 $$\text{argmin}\{|p_1 - p_2|, |q_1 - q_2|, |p_3 - q_3|\}.$$
The closest pair point

Remarks:

1. Both \(p_3 \) and \(q_3 \) must be within distance \(d = \min\{|p_1 - p_2|, |q_1 - q_2|\} \) of \(\text{mid} \) if \(\{p_3, q_3\} \) is to have a distance smaller than \(d \).
The closest pair point

Remarks:

1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 - p_2|, |q_1 - q_2|\}$ of mid if $\{p_3, q_3\}$ is to have a distance smaller than d.

2. How many points of S_1 can lie in $(\text{mid} - d, \text{mid}]$?

3. How many points of S_2 can lie in $[\text{mid}, \text{mid} + d)$?

4. Therefore, the number of pairwise comparisons that must be made between points in different subsets is thus at most one.
The closest pair point

Remarks:

1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 - p_2|, |q_1 - q_2|\}$ of mid if $\{p_3, q_3\}$ is to have a distance smaller than d.

2. How many points of S_1 can lie in $(\text{mid} - d, \text{mid}]$?

 $\text{answer: at most one}$
The closest pair point

Remarks:

1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 - p_2|, |q_1 - q_2|\}$ of \textit{mid} if $\{p_3, q_3\}$ is to have a distance smaller than d.

2. How many points of S_1 can lie in $(\textit{mid} - d, \textit{mid}]$?
 \textit{answer: at most one}

3. How many points of S_2 can lie in $[\textit{mid}, \textit{mid} + d)$?
The closest pair point

Remarks:

1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 - p_2|, |q_1 - q_2|\}$ of mid if $\{p_3, q_3\}$ is to have a distance smaller than d.

2. How many points of S_1 can lie in $(mid - d, mid]$?

 answer: at most one

3. How many points of S_2 can lie in $[mid, mid + d)$?

 answer: at most one
The closest pair point

Remarks:

1. Both \(p_3 \) and \(q_3 \) must be within distance \(d = \min\{|p_1 - p_2|, |q_1 - q_2|\} \)
 of \(\text{mid} \) if \(\{p_3, q_3\} \) is to have a distance smaller than \(d \).

2. How many points of \(S_1 \) can lie in \((\text{mid} - d, \text{mid})\)?
 \text{answer: at most one}

3. How many points of \(S_2 \) can lie in \([\text{mid}, \text{mid} + d)\)?
 \text{answer: at most one}

4. Therefore, the number of pairwise comparisons that must be made between points in different subsets is thus \text{at most one}.
The closest pair point

ClosestPair(S)
if |S| = 2, then
else
 if |S| = 1
 \(d = \text{infty} \)
 else
 mid = median(S)
 construct S1 and S2 from mid
 d1 = ClosestPair(S1)
 d2 = ClosestPair(S2)
 p3 = max(S1)
 q3 = min(S2)
 d = min(d1, d2, q3-p3)
 end if
end if
return d
The closest pair point

Remark:

1. A median of a set A is the “halfway point” of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
The closest pair point

Remark:

1. A median of a set A is the “halfway point” of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).

2. The points in the intervals $(\text{mid} - d, \text{mid}]$ and $[\text{mid}, \text{mid} + d)$ can be found in linear time $O(n)$, called linear scan.
The closest pair point

Remark:

1. A **median** of a set A is the “halfway point” of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).

2. The points in the intervals $(\text{mid} - d, \text{mid}]$ and $[\text{mid}, \text{mid} + d)$ can be found in linear time $O(n)$, called **linear scan**.

3. Total cost:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n).$$
The closest pair point

Remark:

1. A median of a set A is the “halfway point” of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).

2. The points in the intervals $(\text{mid} - d, \text{mid}]$ and $[\text{mid}, \text{mid} + d)$ can be found in linear time $O(n)$, called linear scan.

3. Total cost:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \lg n).$$

4. In general, given n points in d-dimension, the closest pair of points can be found in $O(n(\lg n)^{d-1})$.
Extra: Medians and order statistics

- Selection problem:

 Input:

 A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

A median is the “halfway point” of the set A, i.e., $i = \lceil \frac{n+1}{2} \rceil$.

A simple sorting algorithm will take $O(n \log n)$ time.

Yet, a DC strategy leads to running time of $O(n)$ — see Chapter 9.
Extra: Medians and order statistics

- Selection problem:
 - Input:

 A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

 - Output:

 The element $x \in A$ that is larger than exactly $i - 1$ other elements of A. In other words, x is the ith smallest element of A.
Extra: Medians and order statistics

- **Selection problem:**

 Input:

 A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

 Output:

 The element $x \in A$ that is larger than exactly $i - 1$ other elements of A. In other words, x is the ith smallest element of A.

- A median is the “halfway point” of the set A, i.e., $i = \lceil (n + 1)/2 \rceil$.

 ▶ A simple sorting algorithm will take $O(n \log n)$ time.

 ▶ Yet, a DC strategy leads to running time of $O(n)$—see Chapter 9.
Selection problem:

Input:

A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

Output:

The element $x \in A$ that is larger than exactly $i - 1$ other elements of A. In other words, x is the ith smallest element of A.

A median is the “halfway point” of the set A, i.e., $i = \lceil (n + 1)/2 \rceil$.

A simple sorting algorithm will take $O(n \log n)$ time.
Extra: Medians and order statistics

- Selection problem:

 Input:

 A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

 Output:

 The element $x \in A$ that is larger than exactly $i - 1$ other elements of A. In other words, x is the ith smallest element of A.

- A median is the “halfway point” of the set A, i.e., $i = \lceil (n + 1)/2 \rceil$.
- A simple sorting algorithm will take $O(n \lg n)$ time.
- Yet, a DC strategy leads to running time of $O(n)$ — see Chapter 9.