Dyn

amic Programming

Four-step (two-phase) method:

1

2
3
4

. Characterize the structure of an optimal solution
. Recursively define the value of an optimal solution
. Compute the value of an optimal solution in a bottom-up fashion

. Construct an optimal solution from computed information

Longest Common Subsequence (LCS) — DP case study 3

Problem statement:

Longest Common Subsequence (LCS) — DP case study 3

Problem statement:

Input: Sequences

Xm - <x17x271‘37"'amm>

Yn = <yl7y2a"'7yn>

Longest Common Subsequence (LCS) — DP case study 3

Problem statement:

Input: Sequences

Xm - <x17x271‘37"'amm>

Yn = <yl7y2a"'7yn>

Output: longest common subsequence (LCS) of X,,, and Yy,

LCS

Terminology

1. Sequence, e.g.
» X;=(A,B,C,B,D, A, B)
> ALGORITHM

LCS

Terminology
1. Sequence, e.g.

» X;=(A,B,C,B,D, A, B)
» ALGORITHM

2. Subsequence, e.g.
» (A,C, D, B) is a subsequence of X
> ART is a subsequence ALGORITHM

LCS

Terminology
1. Sequence, e.g.

» X;=(A,B,C,B,D,A,B)
» ALGORITHM

2. Subsequence, e.g.
» (A,C, D, B) is a subsequence of X
> ART is a subsequence ALGORITHM

3. Common subsequence, e.g.
> Given X = (A, B,C, B, D, A, B)
Yo = (B,D,C, A, B, A)
» Z3=(B,C,A) is a common subsequence of X7 and Ys
» Zy=(B,C, B, A) is also a common subsequence of X7 and Y

LCS

Terminology
1. Sequence, e.g.

» X;=(A,B,C,B,D, A, B)
» ALGORITHM

2. Subsequence, e.g.
» (A,C, D, B) is a subsequence of X
> ART is a subsequence ALGORITHM

3. Common subsequence, e.g.
> Given X = (A, B,C, B, D, A, B)
Yo = (B,D,C, A, B, A)
» Z3=(B,C,A) is a common subsequence of X7 and Ys
» Zy=(B,C, B, A) is also a common subsequence of X7 and Y

4. Longest common subsequence (LCS), e.g.

» Z, is a longest common subsequence (LCS) of X7 and Ys
» LCS is not unique, (B,C, A, B) is also a LCS.

LCS

A brute-force solution:

» For every subsequence of X,,, check if it is a subsequence of Y,,.

LCS

A brute-force solution:

» For every subsequence of X,,, check if it is a subsequence of Y,,.
» Running time: O(n - 2™)

» Intractable!

LCS

DP — step 1: characterize the structure of an optimal solution

LCS

DP — step 1: characterize the structure of an optimal solution
Let Z = (21, 22,..., 2;) be any LCS of
Xm = {(x1,22,...,2m) and Yo = (Y1, ,Yn)

Then

LCS

DP — step 1: characterize the structure of an optimal solution

Let Zy, = (21, 22,...,2;) be any LCS of

Xm = {(x1,22,...,2m) and Yo = (Y1, ,Yn)

Then
» Case 1. If z,,, = y,,, then
(a) Zk = Tm = Yn

(b) Zi—1 = (21,22, ..., 26-1) = LCS(Xpn—1,Yn—1)

LCS

DP — step 1: characterize the structure of an optimal solution

Let Zy, = (21, 22,...,2;) be any LCS of

Xm = {(x1,22,...,2m) and Yo = (Y1, ,Yn)
Then
» Case 1. If z,,, = y,,, then
(a) 2x = 2m = yn
(b) Zp—1 = (21,22, 2k-1) = LCS(Xyn—1,Yn—1)
» Case 2. If 2, # y,,, then
() zx # xm = Zr = LCS(X1, Yn)
(b) z1 # yn = Z, = LCS(X, Y1)

LCS

DP — step 1: characterize the structure of an optimal solution

Let Zy = (z1,29,...,2;) be any LCS of

Xm = {(x1,22,...,2m) and Yo = (Y1, ,Yn)
Then
» Case 1. If z,,, = y,,, then
(a) 2x = 2m = yn
(b) Zp—1 = (21,22, 2k-1) = LCS(Xyn—1,Yn—1)
» Case 2. If 2, # y,,, then
() zx # xm = Zr = LCS(X1, Yn)
(b) z1 # yn = Z, = LCS(X, Y1)

In words, the optimal solution to the (whole) problem contains within it the
otpimal solutions to subproblems

LCS

DP — step 1: characterize the structure of an optimal solution

Let Zy, = (21, 22,...,2;) be any LCS of

Xm = {(x1,22,...,2m) and Yo = (Y1, ,Yn)
Then
» Case 1. If z,,, = y,,, then
(a) 2x = 2m = yn
(b) Zp—1 = (21,22, 2k-1) = LCS(Xyn—1,Yn—1)
» Case 2. If 2, # y,,, then
() zx # xm = Zr = LCS(X1, Yn)
(b) z1 # yn = Z, = LCS(X, Y1)

In words, the optimal solution to the (whole) problem contains within it the
otpimal solutions to subproblems = the optimal substructure property

LCS

DP — step 2: recursively define the value of an optimal solution

6/11

LCS

DP — step 2: recursively define the value of an optimal solution

» Define
cli, j] = length of LCS(X;,Y;)

6/11

LCS

DP — step 2: recursively define the value of an optimal solution

» Define
cli, j] = length of LCS(X;,Y;)

> ¢[m,n] = length of LCS(X,,,,Ys)

6/11

LCS

DP — step 2: recursively define the value of an optimal solution

» Define
cli, j] = length of LCS(X;,Y;)

> ¢[m,n] = length of LCS(X,,,,Ys)

> c[i, 0] = ¢[0, j] = O for initialization

6

11

LCS

DP — step 2: recursively define the value of an optimal solution

» Define
cli, j] = length of LCS(X;,Y;)
> ¢[m,n] = length of LCS(X,,,,Ys)
> c[i, 0] = ¢[0, j] = O for initialization
> By Case 1 of the optimal structure property: if x; = y;, then

(a) 2o =2 =y;
(b) Zo—1 = (21,22, ..., 20-1) = LCS(X;-1,Y;_1)

6

11

LCS

DP — step 2: recursively define the value of an optimal solution

» Define
cli, j] = length of LCS(X;,Y;)
> ¢[m,n] = length of LCS(X,,,,Ys)
> c[i, 0] = ¢[0, j] = O for initialization
> By Case 1 of the optimal structure property: if x; = y;, then
(a) 20 =wi =y
(b) Zo—1 = (21,22, ..., 20-1) = LCS(X;-1,Y;_1)

we have
C[Zvj] = C[l - 17] - 1] + 1

6

11

LCS

DP — step 2: recursively define the value of an optimal solution

» Define
cli, j] = length of LCS(X;,Y;)
> ¢[m,n] = length of LCS(X,,,,Ys)
> c[i, 0] = ¢[0, j] = O for initialization
> By Case 1 of the optimal structure property: if x; = y;, then
(a) 20 =wi =y
(b) Zo—1 = (21,22, ..., 20-1) = LCS(X;-1,Y;_1)
we have
C[Zvj] = C[l - 17] - 1] +1
> By Case 2 of the optimal structure property: if z; # y;, then
(3) 20 # T, = Jy = LCS(X,_l,Y)
(b) 20 # y; = Zp = LCS(X,, Y1)

6

11

LCS

DP — step 2: recursively define the value of an optimal solution

>

Define
cli, j] = length of LCS(X;,Y;)

c[m, n] = length of LCS(X,,,Y,)

> c[i, 0] = ¢[0, j] = O for initialization

By Case 1 of the optimal structure property: if x; = y;, then
(a) 20 =wi =y
(b) Zo—1 = (21,22, ..., 20-1) = LCS(X;-1,Y;_1)
we have
C[Zvj] = C[l - 17] - 1] +1
By Case 2 of the optimal structure property: if x; # y;, then
(3) 20 # T, = Jy = LCS(X,_l,Y)
(b) 20 # y; = Zp = LCS(X,, Y1)

we have
cli, j] = max{c[i,j — 1],¢li — 1, 7]}

6

11

LCS

> In summary,

0 if i =0 or j = 0 (initials)
cli, 7] = { cli—1,7—-1]+1 if x[i] = y[j] (Case 1)
max{c[i,j — 1],c[¢ — 1,4]} if z[i] # y[j] (Case 2)

LCS

> In summary,

0 if i =0 or j = 0 (initials)
cli, 7] = { cli—1,7—-1]+1 if x[i] = y[j] (Case 1)
max{c[i,j — 1],c[¢ — 1,4]} if z[i] # y[j] (Case 2)

> Meanwhile, create b[i, j] to record the optimal subproblem solution
chosen when computing c[, j]

LCS

DP — step 3: compute c[i, j] (and bli, j]) in a bottom-up approach
» Compute c[i, 7] and b[i, j] in a bottom-up approach.

> c[i, j] is the length of LCS(X;,Y;)
> b[i, j] shows how to construct the corresponding LCS(X;, Y;)

LCS

DP — step 3: compute c[i, j] (and bli, j]) in a bottom-up approach
» Compute c[i, 7] and b[i, j] in a bottom-up approach.

> c[i, j] is the length of LCS(X;,Y;)
> b[i, j] shows how to construct the corresponding LCS(X;, Y;)

> Cost:
> Running time: ©(mn)
> Space: ©(mn)

LCS

LCS-length(X,Y)
set c[i,0] = 0 and c[0,j] =0
for i = 1 to m // Row-major order to compute c and b arrays
for j =1ton
if X(1) =Y
cli,jl = cli-1,j-1] + 1
bl[i,j] = ’Diag’ // go to up diagonal
elseif c[i-1,j] >= cl[i,j-1]
cli,jl = cli-1,j]

bli,j] = ’Up’ // go up
else
cli,jl = cli,j-1]
bli,j] = ’Left’ // go left
endif
endfor
endfor

return ¢ and b

9/11

LCS

DP — step 4: construct an optimal solution from computed information

10/11

LCS

Example: X7 = (A,B,C,B,D,A,B) and Y5 = (B,D,C, A, B, A)

11/11

LCS

(B,D,C, A, B, A)

(A,B,C,B,D,A,B) and Y;

Example: X7

C['a } + b[a] :

B D IC A B A

Y

[= — A O <[« <
/ 7 ! ! 7
S| | N el <
;\ / /
(= — — A A N« on)

07 — — Al — Alf— A —

L

—of He—f—— af—al—a]
7 ! e

«— O — — — — e | — |

of o o o o o o o
= o RO R QR
© —~ & o <+ v O ©~

11/11

LCS

Example: X7 = (A,B,C,B,D,A,B) and Y5 = (B,D,C, A, B, A)

[y]+ B[] : i 0 1 2 3 4 5 6
i v B D © a4 ® @
0 x| ol ol ol ol ol ol o
LA T TN AN

ol ol ol ol ‘1l<1] 1
N TN
2 B o] iler]er] 1] 2l
TN o
3@ of 1| 1| 2e2| 2| 2
N T TIN
4 B o 1] 1] 2] 2] 3]s
AN I
5 D o 1] 2| 2| 21 3] 3
TN TIN
6 A ol 1| 2| 2] 3] 3| 4
ol 1] 2| 2| 3| 4| 4

(1) Length of LCS = c[7,6] =4
(2) By the b-table (“t,«,X."), the LCS is BC B A

11/11

