Dyn

amic Programming

Four-step (two-phase) method:

1

2
3
4

. Characterize the structure of an optimal solution
. Recursively define the value of an optimal solution
. Compute the value of an optimal solution in a bottom-up fashion

. Construct an optimal solution from computed information

Review: the rod cutting problem

Dynamic Programming Solution
» Phase I:
Since every optimal solution 7, has a leftmost cut with length 7, the
optimal revenue r,, is given by

Tno o= max {p; +rn_i} =pi, +rai
1<i<n

> Phase Il:
compute 7, in bottom-up iteration (memoization)

Matrix-chain multiplication — DP case study 2

Review: Matrix-matrix multiplication

» Given A of order p x ¢ and B of order ¢ x r, then C' = AB is of order
p X r, and (7, j)-entry of C is given by

q
Cij = Z Aik By
k=1

» Cost: pgr scalar multiplications

Matrix-chain multiplication

Review: ordering of matrix-chain multiplication

» Given A; of order py X py
Ao of order p; X po
Ajs of order py X p3
Then different orderings of the product A; A> A3 generate the same
result
(A1A45)A5 = A1(AxA3),

but the costs are different!

» Example:
Al(].O X 5), A2(X 10), A3(10 X 5)

)
> cost of (A1A2)A3 =10-5-10+10-10-5 = 1000
> cost of A1(A2A3)=5-10-54+10-5-5 =500

Matrix-chain multiplication

Problem statement:

Input: A sequence (chain) of (A1, Aa, ...

where A; is of order p;_1 X p;.

,Ap) of matrices,

Matrix-chain multiplication

Problem statement:

Input: A sequence (chain) of (A1, Asa, ..., A,) of matrices,

where A; is of order p;_1 X p;.

Output: full parenthesization (ordering) for the product
Ay - Asy---- A, that minimizes the number
of (scalar) multiplications.

Matrix-chain multiplication

Brute-force solution

» Exhaustive search for determining the optimal ordering

6/13

Matrix-chain multiplication

Brute-force solution

» Exhaustive search for determining the optimal ordering

» Counting the total number of orderings

6/13

Matrix-chain multiplication

Brute-force solution
» Exhaustive search for determining the optimal ordering
» Counting the total number of orderings

1. Define
P(n) = the number of orderings for a chain of n matrices

6/13

Matrix-chain multiplication

Brute-force solution

» Exhaustive search for determining the optimal ordering
» Counting the total number of orderings

1. Define
P(n) = the number of orderings for a chain of n matrices

2. Then P(1) =1 and for n > 2,

P(n) = () (n—=1)+P(2)P(n—2)+---+P(n—1)P(1)

[
M\

6

13

Matrix-chain multiplication

Brute-force solution

» Exhaustive search for determining the optimal ordering
» Counting the total number of orderings

1. Define
P(n) = the number of orderings for a chain of n matrices

2. Then P(1) =1 and for n > 2,

P(n) = () (n—=1)+P(2)P(n—2)+---+P(n—1)P(1)

[
M\

3. P(n) is called a Catalan number, which grows as P(n) = 2(2")

6

13

Matrix-chain multiplication

Brute-force solution

» Exhaustive search for determining the optimal ordering
» Counting the total number of orderings

1. Define
P(n) = the number of orderings for a chain of n matrices

2. Then P(1) =1 and for n > 2,

P(n) = () (n—=1)+P(2)P(n—2)+---+P(n—1)P(1)

[
M\

3. P(n) is called a Catalan number, which grows as P(n) = 2(2")

» Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6

13

Matrix-chain multiplication

DP — step 1: characterize the structure of an optimal ordering

YWhy? simply argue by contradiction: If there were a less costly way to order the
product A; - - Ay, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1 Ag--- Ay, whose cost would be less than the optimum, a
contradiction!

Matrix-chain multiplication

DP — step 1: characterize the structure of an optimal ordering

» An optimal ordering of the product A; As --- A, splits the product
between Ay and Ay,1 for some k:

A1A2"'An:Al"'Ak:'Ak:+1"'An

YWhy? simply argue by contradiction: If there were a less costly way to order the
product A; - - Ay, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1 Ag--- Ay, whose cost would be less than the optimum, a
contradiction!

Matrix-chain multiplication

DP — step 1: characterize the structure of an optimal ordering

» An optimal ordering of the product A; As --- A, splits the product
between Ay and Ay,1 for some k:

A1A2"'An:Al"'Ak:'Ak:+1"'An

> Key observation: the ordering of Aj - - - Ay within this (“global™)
optimal ordering must be an optimal ordering of (sub-product)
Ay At

YWhy? simply argue by contradiction: If there were a less costly way to order the
product A; - - Ay, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1 Ag--- Ay, whose cost would be less than the optimum, a
contradiction!

Matrix-chain multiplication

DP — step 1: characterize the structure of an optimal ordering

» An optimal ordering of the product A; As --- A, splits the product
between Ay and Ay,1 for some k:

A1A2"'An:Al"'Ak:'Ak:+1"'An

> Key observation: the ordering of Aj - - - Ay within this (“global™)
optimal ordering must be an optimal ordering of (sub-product)
Ay Ap.

» Similar observation holds for Ax41--- A,

» Thus, an optimal (“global™) solution contains within it the optimal
(“local™) solutions to subproblems. (the optimal substructure
property)

YWhy? simply argue by contradiction: If there were a less costly way to order the
product A; - - Ay, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1 Ag--- Ay, whose cost would be less than the optimum, a
contradiction!

Matrix-chain multiplication

DP — step 2: recursively define the value of an optimal solution

Matrix-chain multiplication

DP — step 2: recursively define the value of an optimal solution

» Define

mli, j| = min. number of multip. needed to compute 4; --- A;.

Matrix-chain multiplication

DP — step 2: recursively define the value of an optimal solution

» Define

mli, j] = min. number of multip. needed to compute A;--- A;.

» By the definition,

m[1,n] = the cheapest way for the product A;As--- A,.

Matrix-chain multiplication

DP — step 2: recursively define the value of an optimal solution

» Define

mli, j] = min. number of multip. needed to compute A;--- A;.

» By the definition,
m[1,n] = the cheapest way for the product A;As--- A,.

> mli, j] can be defined recursively

Matrix-chain multiplication

DP — step 2: recursively define the value of an optimal solution

» Define

mli, j] = min. number of multip. needed to compute A;--- A;.

» By the definition,
m[1,n] = the cheapest way for the product A;As--- A,.
> mli, j] can be defined recursively
for1 <:<j5<n,
0 ifi=j
mli, j] =

min {mli, k] +m[k + 1, j] + picipep;} i<
i<k<j

Matrix-chain multiplication

DP — step 2: recursively define the value of an optimal solution

» Define
mli, j] = min. number of multip. needed to compute A;--- A;.
» By the definition,
m[1,n] = the cheapest way for the product A;As--- A,.

> mli, j] can be defined recursively
for1 <:<j5<n,
0 ifi=j
mli, j] =

min {mli, k] +m[k + 1, j] + picipep;} i<
i<k<j

» To construct an optimal ordering, we track

the value & such that m[i, j] attains the minimum = k. = s[i, j]

Matrix-chain multiplication

DP — step 3: compute the value of an optimal solution in a bottom-up
approach

» Compute mli, j| and s[i, j] in a bottom-up approach. (see the
pseudocode in next page)

Matrix-chain multiplication

DP — step 3: compute the value of an optimal solution in a bottom-up
approach

» Compute mli, j| and s[i, j] in a bottom-up approach. (see the
pseudocode in next page)

» Cost: T'(n) = O(n3) since

9/13

Matrix-chain multiplication

DP — step 3: compute the value of an optimal solution in a bottom-up
approach

» Compute mli, j| and s[i, j] in a bottom-up approach. (see the
pseudocode in next page)

» Cost: T'(n) = O(n3) since
1. compute n(n — 1)/2 entries of m-table

2. for each entry of m-table, it finds the minimum of fewer than n
expressions.

9/13

Matrix-chain multiplication
matrix-chain-order (p)
create m[1...n,1...n] and s[1...n,1...n] and n = length(p)-1
for i =1 ton
m[i,i] =0
for d =2 ton
for i = 1 to n-d+1
j=i+d-1
m[i,j] = +infty //compute m[i,jl=min_k{...}
for k = i to j-1
q m[i,k] + m[k+1,j] + p[i-1]*p[k]l*p[j]
if q < m[i,j]
m[i,jl =q
s[i,jl = k
endif
endfor
endfor
endfor
return m and s

Matrix-chain multiplication

DP — step 4: construct an optimal solution from computed m and s tables

11/13

Matrix-chain multiplication

Example 1. Letp = [3 1 4 5 4],
namely, Ay is3x 1, Ayis1 x4, A3is4 x5, Ay isH x 4.

matrix-chain-order (p) generates the following m-table for optimal
costs, and s-table for orderings:

m=1[012 35 52] s=[0111]
[0 020 40] [0023]
[0 0 080] [0003]
[0 0 0 0] [0000]

Matrix-chain multiplication

Example 1. Letp = [3 1 4 5 4],
namely, Ay is3x 1, Ayis1 x4, A3is4 x5, Ay isH x 4.

matrix-chain-order (p) generates the following m-table for optimal
costs, and s-table for orderings:

m=1[012 35 52] s=[0111]
[0 020 40] [0023]
[0 0 080] [0003]
[0 0 0 0] [0000]

By m-table, the minimum number of multiplications is

m[1,4] = 52

Matrix-chain multiplication

Example 1. Letp = [3 1 4 5 4],
namely, Ay is3x 1, Ayis1 x4, A3is4 x5, Ay isH x 4.

matrix-chain-order (p) generates the following m-table for optimal
costs, and s-table for orderings:

m=1[012 35 52] s=[0111]
[0 020 40] [0023]
[0 0 080] [0003]
[0 0 0 0] [0000]

By m-table, the minimum number of multiplications is

m[1,4] = 52
By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1) ((A2 43) Ag)

Matrix-chain multiplication

Example 2. Let p = [30 35 156 5 10 20 25].

13/13

Matrix-chain multiplication

Example 2. Let p = [30 35 156 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 15750 7875 9375 11875 15125] s = [011 3 3 3]
[o 0 2625 4375 7125 10500 1] [002333]
[o 0 0 750 2500 5375] [000333]
Lo 0 0 0 1000 3500] [000045]
[o 0 0 0 0 5000 1] [000005]
[o 0 0 0 0 01 [0000O0O0]

13/13

Matrix-chain multiplication

Example 2. Let p = [30 35 156 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 15750 7875 9375 11875 15125] s = [011 3 3 3]
[o 0 2625 4375 7125 10500 1] [002333]
[o 0 0 750 2500 5375] [000333]
Lo 0 0 0 1000 3500] [000045]
[o 0 0 0 0 5000 1] [000005]
[o 0 0 0 0 01 [0000O0O0]

By m-table, the minimum number of multiplications is

m[1,6] = 15125

13/13

Matrix-chain multiplication

Example 2. Let p = [30 35 156 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal

costs, and s-table for orderings:

0

m = [0 15750 7875 9375 11875 15125] s =
0 2625 4375 7125 10500 1]
0 0 750 2500 5375]
0 0 0 1000 3500]
0 0 0 0 5000 1]
0 0 0 0 01

(o T e W e W e W |
o O O O

[B B e W e B e B |
O O O O OO
O O O O O

By m-table, the minimum number of multiplications is

By s-table, an optimal parenthesization (ordering) of the matrix-chain

m[1,6] = 15125

multiplication is given by

(A1 (A2A43))((A145) Ag)

O O O O N+

O OO W ww
O O b W ww
O U1 Ul W W Ww
[T T N R R R S|

13/13

