
Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information

1 / 13

Review: the rod cutting problem

Dynamic Programming Solution

I Phase I:
Since every optimal solution rn has a leftmost cut with length i, the
optimal revenue rn is given by

rn = max
1≤i≤n

{pi + rn−i} = pi∗ + rn−i∗

I Phase II:
compute rn in bottom-up iteration (memoization)

2 / 13

Matrix-chain multiplication – DP case study 2

Review: Matrix-matrix multiplication

I Given A of order p× q and B of order q × r, then C = AB is of order
p× r, and (i, j)-entry of C is given by

Cij =

q∑
k=1

AikBkj

I Cost: pqr scalar multiplications

3 / 13

Matrix-chain multiplication

Review: ordering of matrix-chain multiplication

I Given A1 of order p0 × p1
A2 of order p1 × p2
A3 of order p2 × p3

Then different orderings of the product A1A2A3 generate the same
result

(A1A2)A3 = A1(A2A3),

but the costs are different!

I Example:

A1(10× 5), A2(5× 10), A3(10× 5)

I cost of (A1A2)A3 = 10 · 5 · 10 + 10 · 10 · 5 = 1000
I cost of A1(A2A3) = 5 · 10 · 5 + 10 · 5 · 5 = 500

4 / 13

Matrix-chain multiplication

Problem statement:

Input: A sequence (chain) of (A1, A2, . . . , An) of matrices,
where Ai is of order pi−1 × pi.

Output: full parenthesization (ordering) for the product
A1 ·A2 · · · ·An that minimizes the number
of (scalar) multiplications.

5 / 13

Matrix-chain multiplication

Problem statement:

Input: A sequence (chain) of (A1, A2, . . . , An) of matrices,
where Ai is of order pi−1 × pi.

Output: full parenthesization (ordering) for the product
A1 ·A2 · · · ·An that minimizes the number
of (scalar) multiplications.

5 / 13

Matrix-chain multiplication

Brute-force solution

I Exhaustive search for determining the optimal ordering

I Counting the total number of orderings

1. Define
P (n) = the number of orderings for a chain of n matrices

2. Then P (1) = 1 and for n ≥ 2,

P (n) = P (1)P (n− 1) + P (2)P (n− 2) + · · ·+ P (n− 1)P (1)

=

n−1∑
k=1

P (k)P (n− k)

3. P (n) is called a Catalan number, which grows as P (n) = Ω(2n)

I Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6 / 13

Matrix-chain multiplication

Brute-force solution

I Exhaustive search for determining the optimal ordering

I Counting the total number of orderings

1. Define
P (n) = the number of orderings for a chain of n matrices

2. Then P (1) = 1 and for n ≥ 2,

P (n) = P (1)P (n− 1) + P (2)P (n− 2) + · · ·+ P (n− 1)P (1)

=

n−1∑
k=1

P (k)P (n− k)

3. P (n) is called a Catalan number, which grows as P (n) = Ω(2n)

I Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6 / 13

Matrix-chain multiplication

Brute-force solution

I Exhaustive search for determining the optimal ordering

I Counting the total number of orderings

1. Define
P (n) = the number of orderings for a chain of n matrices

2. Then P (1) = 1 and for n ≥ 2,

P (n) = P (1)P (n− 1) + P (2)P (n− 2) + · · ·+ P (n− 1)P (1)

=

n−1∑
k=1

P (k)P (n− k)

3. P (n) is called a Catalan number, which grows as P (n) = Ω(2n)

I Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6 / 13

Matrix-chain multiplication

Brute-force solution

I Exhaustive search for determining the optimal ordering

I Counting the total number of orderings

1. Define
P (n) = the number of orderings for a chain of n matrices

2. Then P (1) = 1 and for n ≥ 2,

P (n) = P (1)P (n− 1) + P (2)P (n− 2) + · · ·+ P (n− 1)P (1)

=

n−1∑
k=1

P (k)P (n− k)

3. P (n) is called a Catalan number, which grows as P (n) = Ω(2n)

I Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6 / 13

Matrix-chain multiplication

Brute-force solution

I Exhaustive search for determining the optimal ordering

I Counting the total number of orderings

1. Define
P (n) = the number of orderings for a chain of n matrices

2. Then P (1) = 1 and for n ≥ 2,

P (n) = P (1)P (n− 1) + P (2)P (n− 2) + · · ·+ P (n− 1)P (1)

=

n−1∑
k=1

P (k)P (n− k)

3. P (n) is called a Catalan number, which grows as P (n) = Ω(2n)

I Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6 / 13

Matrix-chain multiplication

Brute-force solution

I Exhaustive search for determining the optimal ordering

I Counting the total number of orderings

1. Define
P (n) = the number of orderings for a chain of n matrices

2. Then P (1) = 1 and for n ≥ 2,

P (n) = P (1)P (n− 1) + P (2)P (n− 2) + · · ·+ P (n− 1)P (1)

=

n−1∑
k=1

P (k)P (n− k)

3. P (n) is called a Catalan number, which grows as P (n) = Ω(2n)

I Therefore, exhaustive search for determining the optimal ordering is
infeasible!

6 / 13

Matrix-chain multiplication

DP – step 1: characterize the structure of an optimal ordering

I An optimal ordering of the product A1A2 · · ·An splits the product
between Ak and Ak+1 for some k:

A1A2 · · ·An = A1 · · ·Ak ·Ak+1 · · ·An

I Key observation: the ordering of A1 · · ·Ak within this (“global”)
optimal ordering must be an optimal ordering of (sub-product)
A1 · · ·Ak. 1

I Similar observation holds for Ak+1 · · ·An

I Thus, an optimal (“global”) solution contains within it the optimal
(“local”) solutions to subproblems. (the optimal substructure
property)

1Why? simply argue by contradiction: If there were a less costly way to order the
product A1 · · ·Ak, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1A2 · · ·An, whose cost would be less than the optimum, a
contradiction!

7 / 13

Matrix-chain multiplication

DP – step 1: characterize the structure of an optimal ordering

I An optimal ordering of the product A1A2 · · ·An splits the product
between Ak and Ak+1 for some k:

A1A2 · · ·An = A1 · · ·Ak ·Ak+1 · · ·An

I Key observation: the ordering of A1 · · ·Ak within this (“global”)
optimal ordering must be an optimal ordering of (sub-product)
A1 · · ·Ak. 1

I Similar observation holds for Ak+1 · · ·An

I Thus, an optimal (“global”) solution contains within it the optimal
(“local”) solutions to subproblems. (the optimal substructure
property)

1Why? simply argue by contradiction: If there were a less costly way to order the
product A1 · · ·Ak, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1A2 · · ·An, whose cost would be less than the optimum, a
contradiction!

7 / 13

Matrix-chain multiplication

DP – step 1: characterize the structure of an optimal ordering

I An optimal ordering of the product A1A2 · · ·An splits the product
between Ak and Ak+1 for some k:

A1A2 · · ·An = A1 · · ·Ak ·Ak+1 · · ·An

I Key observation: the ordering of A1 · · ·Ak within this (“global”)
optimal ordering must be an optimal ordering of (sub-product)
A1 · · ·Ak. 1

I Similar observation holds for Ak+1 · · ·An

I Thus, an optimal (“global”) solution contains within it the optimal
(“local”) solutions to subproblems. (the optimal substructure
property)

1Why? simply argue by contradiction: If there were a less costly way to order the
product A1 · · ·Ak, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1A2 · · ·An, whose cost would be less than the optimum, a
contradiction!

7 / 13

Matrix-chain multiplication

DP – step 1: characterize the structure of an optimal ordering

I An optimal ordering of the product A1A2 · · ·An splits the product
between Ak and Ak+1 for some k:

A1A2 · · ·An = A1 · · ·Ak ·Ak+1 · · ·An

I Key observation: the ordering of A1 · · ·Ak within this (“global”)
optimal ordering must be an optimal ordering of (sub-product)
A1 · · ·Ak. 1

I Similar observation holds for Ak+1 · · ·An

I Thus, an optimal (“global”) solution contains within it the optimal
(“local”) solutions to subproblems. (the optimal substructure
property)

1Why? simply argue by contradiction: If there were a less costly way to order the
product A1 · · ·Ak, substituting that ordering within this (global) optimal ordering would
produce another ordering of A1A2 · · ·An, whose cost would be less than the optimum, a
contradiction!

7 / 13

Matrix-chain multiplication

DP – step 2: recursively define the value of an optimal solution

I Define

m[i, j] = min. number of multip. needed to compute Ai · · ·Aj .

I By the definition,

m[1, n] = the cheapest way for the product A1A2 · · ·An.

I m[i, j] can be defined recursively

for 1 ≤ i ≤ j ≤ n,

m[i, j] =

 0 if i = j

min
i≤k<j

{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

I To construct an optimal ordering, we track

the value k such that m[i, j] attains the minimum ≡ k∗ ≡ s[i, j]

8 / 13

Matrix-chain multiplication

DP – step 2: recursively define the value of an optimal solution

I Define

m[i, j] = min. number of multip. needed to compute Ai · · ·Aj .

I By the definition,

m[1, n] = the cheapest way for the product A1A2 · · ·An.

I m[i, j] can be defined recursively

for 1 ≤ i ≤ j ≤ n,

m[i, j] =

 0 if i = j

min
i≤k<j

{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

I To construct an optimal ordering, we track

the value k such that m[i, j] attains the minimum ≡ k∗ ≡ s[i, j]

8 / 13

Matrix-chain multiplication

DP – step 2: recursively define the value of an optimal solution

I Define

m[i, j] = min. number of multip. needed to compute Ai · · ·Aj .

I By the definition,

m[1, n] = the cheapest way for the product A1A2 · · ·An.

I m[i, j] can be defined recursively

for 1 ≤ i ≤ j ≤ n,

m[i, j] =

 0 if i = j

min
i≤k<j

{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

I To construct an optimal ordering, we track

the value k such that m[i, j] attains the minimum ≡ k∗ ≡ s[i, j]

8 / 13

Matrix-chain multiplication

DP – step 2: recursively define the value of an optimal solution

I Define

m[i, j] = min. number of multip. needed to compute Ai · · ·Aj .

I By the definition,

m[1, n] = the cheapest way for the product A1A2 · · ·An.

I m[i, j] can be defined recursively

for 1 ≤ i ≤ j ≤ n,

m[i, j] =

 0 if i = j

min
i≤k<j

{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

I To construct an optimal ordering, we track

the value k such that m[i, j] attains the minimum ≡ k∗ ≡ s[i, j]

8 / 13

Matrix-chain multiplication

DP – step 2: recursively define the value of an optimal solution

I Define

m[i, j] = min. number of multip. needed to compute Ai · · ·Aj .

I By the definition,

m[1, n] = the cheapest way for the product A1A2 · · ·An.

I m[i, j] can be defined recursively

for 1 ≤ i ≤ j ≤ n,

m[i, j] =

 0 if i = j

min
i≤k<j

{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

I To construct an optimal ordering, we track

the value k such that m[i, j] attains the minimum ≡ k∗ ≡ s[i, j]

8 / 13

Matrix-chain multiplication

DP – step 2: recursively define the value of an optimal solution

I Define

m[i, j] = min. number of multip. needed to compute Ai · · ·Aj .

I By the definition,

m[1, n] = the cheapest way for the product A1A2 · · ·An.

I m[i, j] can be defined recursively

for 1 ≤ i ≤ j ≤ n,

m[i, j] =

 0 if i = j

min
i≤k<j

{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

I To construct an optimal ordering, we track

the value k such that m[i, j] attains the minimum ≡ k∗ ≡ s[i, j]

8 / 13

Matrix-chain multiplication

DP – step 3: compute the value of an optimal solution in a bottom-up
approach

I Compute m[i, j] and s[i, j] in a bottom-up approach. (see the
pseudocode in next page)

I Cost: T (n) = Θ(n3) since

1. compute n(n− 1)/2 entries of m-table

2. for each entry of m-table, it finds the minimum of fewer than n
expressions.

9 / 13

Matrix-chain multiplication

DP – step 3: compute the value of an optimal solution in a bottom-up
approach

I Compute m[i, j] and s[i, j] in a bottom-up approach. (see the
pseudocode in next page)

I Cost: T (n) = Θ(n3) since

1. compute n(n− 1)/2 entries of m-table

2. for each entry of m-table, it finds the minimum of fewer than n
expressions.

9 / 13

Matrix-chain multiplication

DP – step 3: compute the value of an optimal solution in a bottom-up
approach

I Compute m[i, j] and s[i, j] in a bottom-up approach. (see the
pseudocode in next page)

I Cost: T (n) = Θ(n3) since

1. compute n(n− 1)/2 entries of m-table

2. for each entry of m-table, it finds the minimum of fewer than n
expressions.

9 / 13

Matrix-chain multiplication
matrix-chain-order(p)

create m[1...n,1...n] and s[1...n,1...n] and n = length(p)-1

for i = 1 to n

m[i,i] = 0

for d = 2 to n

for i = 1 to n-d+1

j = i + d - 1

m[i,j] = +infty //compute m[i,j]=min_k{...}

for k = i to j-1

q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j]

if q < m[i,j]

m[i,j] = q

s[i,j] = k

endif

endfor

endfor

endfor

return m and s

10 / 13

Matrix-chain multiplication

DP – step 4: construct an optimal solution from computed m and s tables

11 / 13

Matrix-chain multiplication

Example 1. Let p = [3 1 4 5 4],
namely, A1 is 3× 1, A2 is 1× 4, A3 is 4× 5, A4 is 5× 4.

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 12 35 52]

[0 0 20 40]

[0 0 0 80]

[0 0 0 0]

s = [0 1 1 1]

[0 0 2 3]

[0 0 0 3]

[0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,4] = 52

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1)((A2A3)A4)

12 / 13

Matrix-chain multiplication

Example 1. Let p = [3 1 4 5 4],
namely, A1 is 3× 1, A2 is 1× 4, A3 is 4× 5, A4 is 5× 4.

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 12 35 52]

[0 0 20 40]

[0 0 0 80]

[0 0 0 0]

s = [0 1 1 1]

[0 0 2 3]

[0 0 0 3]

[0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,4] = 52

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1)((A2A3)A4)

12 / 13

Matrix-chain multiplication

Example 1. Let p = [3 1 4 5 4],
namely, A1 is 3× 1, A2 is 1× 4, A3 is 4× 5, A4 is 5× 4.

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 12 35 52]

[0 0 20 40]

[0 0 0 80]

[0 0 0 0]

s = [0 1 1 1]

[0 0 2 3]

[0 0 0 3]

[0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,4] = 52

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1)((A2A3)A4)

12 / 13

Matrix-chain multiplication

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 15750 7875 9375 11875 15125]

[0 0 2625 4375 7125 10500]

[0 0 0 750 2500 5375]

[0 0 0 0 1000 3500]

[0 0 0 0 0 5000]

[0 0 0 0 0 0]

s = [0 1 1 3 3 3]

[0 0 2 3 3 3]

[0 0 0 3 3 3]

[0 0 0 0 4 5]

[0 0 0 0 0 5]

[0 0 0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,6] = 15125

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1 (A2A3)) ((A4A5)A6)

13 / 13

Matrix-chain multiplication

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 15750 7875 9375 11875 15125]

[0 0 2625 4375 7125 10500]

[0 0 0 750 2500 5375]

[0 0 0 0 1000 3500]

[0 0 0 0 0 5000]

[0 0 0 0 0 0]

s = [0 1 1 3 3 3]

[0 0 2 3 3 3]

[0 0 0 3 3 3]

[0 0 0 0 4 5]

[0 0 0 0 0 5]

[0 0 0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,6] = 15125

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1 (A2A3)) ((A4A5)A6)

13 / 13

Matrix-chain multiplication

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 15750 7875 9375 11875 15125]

[0 0 2625 4375 7125 10500]

[0 0 0 750 2500 5375]

[0 0 0 0 1000 3500]

[0 0 0 0 0 5000]

[0 0 0 0 0 0]

s = [0 1 1 3 3 3]

[0 0 2 3 3 3]

[0 0 0 3 3 3]

[0 0 0 0 4 5]

[0 0 0 0 0 5]

[0 0 0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,6] = 15125

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1 (A2A3)) ((A4A5)A6)

13 / 13

Matrix-chain multiplication

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following m-table for optimal
costs, and s-table for orderings:

m = [0 15750 7875 9375 11875 15125]

[0 0 2625 4375 7125 10500]

[0 0 0 750 2500 5375]

[0 0 0 0 1000 3500]

[0 0 0 0 0 5000]

[0 0 0 0 0 0]

s = [0 1 1 3 3 3]

[0 0 2 3 3 3]

[0 0 0 3 3 3]

[0 0 0 0 4 5]

[0 0 0 0 0 5]

[0 0 0 0 0 0]

By m-table, the minimum number of multiplications is

m[1,6] = 15125

By s-table, an optimal parenthesization (ordering) of the matrix-chain
multiplication is given by

(A1 (A2A3)) ((A4A5)A6)

13 / 13

