
VIII. NP-completeness

1 / 17



NP-Completeness – overview

1. Introduction

2. P and NP

3. NP-complete (NPC): formal definition

4. How to prove a problem is NPC

5. How to solve a NPC problem: approximate algorithms

2 / 17



1. Introduction

Tractable and intractable problems

I Problems that are solvable by polynomial-time algorithms are tractable

I Problems that require superpolynomial time are intractable.

Almost all the algorithms we have studied thus far have been
polynomial-time algorithms on inputs of size n, their worst-case running
time is O(nk) for some constant k.

3 / 17



1. Introduction

Tractable and intractable problems

I Problems that are solvable by polynomial-time algorithms are tractable

I Problems that require superpolynomial time are intractable.

Almost all the algorithms we have studied thus far have been
polynomial-time algorithms on inputs of size n, their worst-case running
time is O(nk) for some constant k.

3 / 17



1. Introduction

Tractable and intractable problems

I Problems that are solvable by polynomial-time algorithms are tractable

I Problems that require superpolynomial time are intractable.

Almost all the algorithms we have studied thus far have been
polynomial-time algorithms on inputs of size n, their worst-case running
time is O(nk) for some constant k.

3 / 17



1. Introduction

Tractable and intractable problems

I Problems that are solvable by polynomial-time algorithms are tractable

I Problems that require superpolynomial time are intractable.

Almost all the algorithms we have studied thus far have been
polynomial-time algorithms on inputs of size n, their worst-case running
time is O(nk) for some constant k.

3 / 17



1. Introduction

NP-complete (NPC) problems: an informal definition

A large class of very diverse problems share the following properties:

1. We only know how to solve those problems in time much larger than
polynomial, namely exponential time.

2. If we could solve one NPC porblem in polynomial time, then there is a
way to solve every NPC problem in polynomial time.

4 / 17



1. Introduction

NP-complete (NPC) problems: an informal definition

A large class of very diverse problems share the following properties:

1. We only know how to solve those problems in time much larger than
polynomial, namely exponential time.

2. If we could solve one NPC porblem in polynomial time, then there is a
way to solve every NPC problem in polynomial time.

4 / 17



1. Introduction

NP-complete (NPC) problems: an informal definition

A large class of very diverse problems share the following properties:

1. We only know how to solve those problems in time much larger than
polynomial, namely exponential time.

2. If we could solve one NPC porblem in polynomial time, then there is a
way to solve every NPC problem in polynomial time.

4 / 17



1. Introduction

Reasons to study NPC porblems – practical

I There is a large class of very diverse intractable problems, and the
difference between tractable and intractable may appear “only
slightly” – examples later;

I you can use a known algorithm for an intractable problem, and accept
that it will take a long long time to solve; or

I you can settle for approximating the solution, e.g., finding a nearly
best solution rather than the optimum; or

I you can change your problem formulation so that it is solvable in
polynomial time.

5 / 17



1. Introduction

Reasons to study NPC porblems – practical

I There is a large class of very diverse intractable problems, and the
difference between tractable and intractable may appear “only
slightly” – examples later;

I you can use a known algorithm for an intractable problem, and accept
that it will take a long long time to solve; or

I you can settle for approximating the solution, e.g., finding a nearly
best solution rather than the optimum; or

I you can change your problem formulation so that it is solvable in
polynomial time.

5 / 17



1. Introduction

Reasons to study NPC porblems – practical

I There is a large class of very diverse intractable problems, and the
difference between tractable and intractable may appear “only
slightly” – examples later;

I you can use a known algorithm for an intractable problem, and accept
that it will take a long long time to solve; or

I you can settle for approximating the solution, e.g., finding a nearly
best solution rather than the optimum; or

I you can change your problem formulation so that it is solvable in
polynomial time.

5 / 17



1. Introduction

Reasons to study NPC porblems – practical

I There is a large class of very diverse intractable problems, and the
difference between tractable and intractable may appear “only
slightly” – examples later;

I you can use a known algorithm for an intractable problem, and accept
that it will take a long long time to solve; or

I you can settle for approximating the solution, e.g., finding a nearly
best solution rather than the optimum; or

I you can change your problem formulation so that it is solvable in
polynomial time.

5 / 17



1. Introduction

Reasons to study NPC porblems – practical

I There is a large class of very diverse intractable problems, and the
difference between tractable and intractable may appear “only
slightly” – examples later;

I you can use a known algorithm for an intractable problem, and accept
that it will take a long long time to solve; or

I you can settle for approximating the solution, e.g., finding a nearly
best solution rather than the optimum; or

I you can change your problem formulation so that it is solvable in
polynomial time.

5 / 17



1. Introduction

Reasons to study NPC porblems – theoretical

I We stated above that “We only know” how to solve those problems in
time much larger than polynomial, Not that we have proven that these
problems require exponential time.

I Indeed, this is one of the most famous problems in computer science:

P
?
= NP

namely

Whether NPC problems have polynomial solutions?

I First posed in 1971
http://www.claymath.org/millennium-problems

6 / 17



1. Introduction

Reasons to study NPC porblems – theoretical

I We stated above that “We only know” how to solve those problems in
time much larger than polynomial, Not that we have proven that these
problems require exponential time.

I Indeed, this is one of the most famous problems in computer science:

P
?
= NP

namely

Whether NPC problems have polynomial solutions?

I First posed in 1971
http://www.claymath.org/millennium-problems

6 / 17



1. Introduction

Reasons to study NPC porblems – theoretical

I We stated above that “We only know” how to solve those problems in
time much larger than polynomial, Not that we have proven that these
problems require exponential time.

I Indeed, this is one of the most famous problems in computer science:

P
?
= NP

namely

Whether NPC problems have polynomial solutions?

I First posed in 1971
http://www.claymath.org/millennium-problems

6 / 17



1. Introduction

Reasons to study NPC porblems – theoretical

I We stated above that “We only know” how to solve those problems in
time much larger than polynomial, Not that we have proven that these
problems require exponential time.

I Indeed, this is one of the most famous problems in computer science:

P
?
= NP

namely

Whether NPC problems have polynomial solutions?

I First posed in 1971
http://www.claymath.org/millennium-problems

6 / 17



1. Introduction

P-vs-NP Examples

Example 1.

I Shortest path:
finding the shortest path from a single source in a directed graph.

I Longest path:
finding the longest simple path between two vertices in a directed
graph.

The first one is solvable in polynomial time (the Bellman-Ford algorithm),
and the second is NPC, but the difference appears to be slight.

7 / 17



1. Introduction

P-vs-NP Examples

Example 1.

I Shortest path:
finding the shortest path from a single source in a directed graph.

I Longest path:
finding the longest simple path between two vertices in a directed
graph.

The first one is solvable in polynomial time (the Bellman-Ford algorithm),
and the second is NPC, but the difference appears to be slight.

7 / 17



1. Introduction

P-vs-NP Examples

Example 1.

I Shortest path:
finding the shortest path from a single source in a directed graph.

I Longest path:
finding the longest simple path between two vertices in a directed
graph.

The first one is solvable in polynomial time (the Bellman-Ford algorithm),
and the second is NPC, but the difference appears to be slight.

7 / 17



1. Introduction

P-vs-NP Examples

Example 1.

I Shortest path:
finding the shortest path from a single source in a directed graph.

I Longest path:
finding the longest simple path between two vertices in a directed
graph.

The first one is solvable in polynomial time (the Bellman-Ford algorithm),
and the second is NPC, but the difference appears to be slight.

7 / 17



1. Introduction

P-vs-NP Examples

Example 2.

I Euler tour:
given a connected, directed graph G, is there a cycle that visits each
edge exactly once (although it is allowed to visit each vertex more
than once)?

I Hamiltonian cycle:
given a connected directed graph G, is there a simple cycle that visits
each vertex exactly once?

The first one is solvable in polynomial time1, and the second is NPC, but
the difference appears to be slight

1Euler cycle of G = (V,E) iff in-degree(v) = out-degree(v) for ∀v ∈ V .
8 / 17



1. Introduction

P-vs-NP Examples

Example 2.

I Euler tour:
given a connected, directed graph G, is there a cycle that visits each
edge exactly once (although it is allowed to visit each vertex more
than once)?

I Hamiltonian cycle:
given a connected directed graph G, is there a simple cycle that visits
each vertex exactly once?

The first one is solvable in polynomial time1, and the second is NPC, but
the difference appears to be slight

1Euler cycle of G = (V,E) iff in-degree(v) = out-degree(v) for ∀v ∈ V .
8 / 17



1. Introduction

P-vs-NP Examples

Example 2.

I Euler tour:
given a connected, directed graph G, is there a cycle that visits each
edge exactly once (although it is allowed to visit each vertex more
than once)?

I Hamiltonian cycle:
given a connected directed graph G, is there a simple cycle that visits
each vertex exactly once?

The first one is solvable in polynomial time1, and the second is NPC, but
the difference appears to be slight

1Euler cycle of G = (V,E) iff in-degree(v) = out-degree(v) for ∀v ∈ V .
8 / 17



1. Introduction

P-vs-NP Examples

Example 2.

I Euler tour:
given a connected, directed graph G, is there a cycle that visits each
edge exactly once (although it is allowed to visit each vertex more
than once)?

I Hamiltonian cycle:
given a connected directed graph G, is there a simple cycle that visits
each vertex exactly once?

The first one is solvable in polynomial time1, and the second is NPC, but
the difference appears to be slight

1Euler cycle of G = (V,E) iff in-degree(v) = out-degree(v) for ∀v ∈ V .
8 / 17



1. Introduction

P-vs-NP Examples

Example 3.

I Minimum spanning tree (MST):
given a weighted graph and an integer k, is there a spanning tree
whose total weight is k or less?

I Traveling salesperson problem (TSP):
given a weighted graph and an integer k, is there a cycle that visits all
vertices exactly once whose total weight is k or less?

The first one is solvable in polynomial time (Prim’s and Kruskal’s
algorithms), and the second is NPC, but the difference appears to be slight

9 / 17



1. Introduction

P-vs-NP Examples

Example 3.

I Minimum spanning tree (MST):
given a weighted graph and an integer k, is there a spanning tree
whose total weight is k or less?

I Traveling salesperson problem (TSP):
given a weighted graph and an integer k, is there a cycle that visits all
vertices exactly once whose total weight is k or less?

The first one is solvable in polynomial time (Prim’s and Kruskal’s
algorithms), and the second is NPC, but the difference appears to be slight

9 / 17



1. Introduction

P-vs-NP Examples

Example 3.

I Minimum spanning tree (MST):
given a weighted graph and an integer k, is there a spanning tree
whose total weight is k or less?

I Traveling salesperson problem (TSP):
given a weighted graph and an integer k, is there a cycle that visits all
vertices exactly once whose total weight is k or less?

The first one is solvable in polynomial time (Prim’s and Kruskal’s
algorithms), and the second is NPC, but the difference appears to be slight

9 / 17



1. Introduction

P-vs-NP Examples

Example 3.

I Minimum spanning tree (MST):
given a weighted graph and an integer k, is there a spanning tree
whose total weight is k or less?

I Traveling salesperson problem (TSP):
given a weighted graph and an integer k, is there a cycle that visits all
vertices exactly once whose total weight is k or less?

The first one is solvable in polynomial time (Prim’s and Kruskal’s
algorithms), and the second is NPC, but the difference appears to be slight

9 / 17



1. Introduction

Traveling salesperson problem (TSP)

10 / 17



1. Introduction

Traveling salesperson problem (TSP)

11 / 17



1. Introduction

P-vs-NP Examples

Example 4.

I Circuit value:
given a Boolean formula and its input, is the output True?

I Circuit satisfiability (SAT):
given a Boolean formula, is there a way to set the inputs so that the
output is True?

The first one is solvable in polynomial time, and the second is NPC, but
the difference appears to be slight.

12 / 17



1. Introduction

P-vs-NP Examples

Example 4.

I Circuit value:
given a Boolean formula and its input, is the output True?

I Circuit satisfiability (SAT):
given a Boolean formula, is there a way to set the inputs so that the
output is True?

The first one is solvable in polynomial time, and the second is NPC, but
the difference appears to be slight.

12 / 17



1. Introduction

P-vs-NP Examples

Example 4.

I Circuit value:
given a Boolean formula and its input, is the output True?

I Circuit satisfiability (SAT):
given a Boolean formula, is there a way to set the inputs so that the
output is True?

The first one is solvable in polynomial time, and the second is NPC, but
the difference appears to be slight.

12 / 17



1. Introduction

P-vs-NP Examples

Example 4.

I Circuit value:
given a Boolean formula and its input, is the output True?

I Circuit satisfiability (SAT):
given a Boolean formula, is there a way to set the inputs so that the
output is True?

The first one is solvable in polynomial time, and the second is NPC, but
the difference appears to be slight.

12 / 17



1. Introduction

Optimization problems and Decision problems

I Most of problems occur naturally as optimization problems,

I but they can also be formulated as decision problems, that is, problems
for which the output is a simple Yes or No answer for each input.

Remarks:

I To simplify discussion, we can consider only decision problems, rather
than optimization problems.

I The optimization problems are at least as hard to solve as the related
decision problems, we have not lost anything essential by doing so.

13 / 17



1. Introduction

Optimization problems and Decision problems

I Most of problems occur naturally as optimization problems,

I but they can also be formulated as decision problems, that is, problems
for which the output is a simple Yes or No answer for each input.

Remarks:

I To simplify discussion, we can consider only decision problems, rather
than optimization problems.

I The optimization problems are at least as hard to solve as the related
decision problems, we have not lost anything essential by doing so.

13 / 17



1. Introduction

Optimization problems and Decision problems

I Most of problems occur naturally as optimization problems,

I but they can also be formulated as decision problems, that is, problems
for which the output is a simple Yes or No answer for each input.

Remarks:

I To simplify discussion, we can consider only decision problems, rather
than optimization problems.

I The optimization problems are at least as hard to solve as the related
decision problems, we have not lost anything essential by doing so.

13 / 17



1. Introduction

Optimization problems and Decision problems

I Most of problems occur naturally as optimization problems,

I but they can also be formulated as decision problems, that is, problems
for which the output is a simple Yes or No answer for each input.

Remarks:

I To simplify discussion, we can consider only decision problems, rather
than optimization problems.

I The optimization problems are at least as hard to solve as the related
decision problems, we have not lost anything essential by doing so.

13 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 1

Graph coloring: A coloring of a graph G = (V,E) is a mapping

C : V → S

where S is a finite set of “colors”, such that

(u, v) ∈ E ⇒ C(u) 6= C(v)

I optimization problem: given G, determine the smallest number of
colors needed.

I decision problem: given G and a positive integer k, is there a coloring
of G using at most k colors?

14 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 1

Graph coloring: A coloring of a graph G = (V,E) is a mapping

C : V → S

where S is a finite set of “colors”, such that

(u, v) ∈ E ⇒ C(u) 6= C(v)

I optimization problem: given G, determine the smallest number of
colors needed.

I decision problem: given G and a positive integer k, is there a coloring
of G using at most k colors?

14 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 1

Graph coloring: A coloring of a graph G = (V,E) is a mapping

C : V → S

where S is a finite set of “colors”, such that

(u, v) ∈ E ⇒ C(u) 6= C(v)

I optimization problem: given G, determine the smallest number of
colors needed.

I decision problem: given G and a positive integer k, is there a coloring
of G using at most k colors?

14 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 1

Graph coloring: A coloring of a graph G = (V,E) is a mapping

C : V → S

where S is a finite set of “colors”, such that

(u, v) ∈ E ⇒ C(u) 6= C(v)

I optimization problem: given G, determine the smallest number of
colors needed.

I decision problem: given G and a positive integer k, is there a coloring
of G using at most k colors?

14 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 2.

Hamiltonian cycle: A Hamiltonian cycle is cycle that passes
through every vertex exactly once.

I decision problem: Does a given graph have a Hamiltonian cycle?

I optimization problem: Give a list of vertices of a Hamiltonian cycle.

15 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 2.

Hamiltonian cycle: A Hamiltonian cycle is cycle that passes
through every vertex exactly once.

I decision problem: Does a given graph have a Hamiltonian cycle?

I optimization problem: Give a list of vertices of a Hamiltonian cycle.

15 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 2.

Hamiltonian cycle: A Hamiltonian cycle is cycle that passes
through every vertex exactly once.

I decision problem: Does a given graph have a Hamiltonian cycle?

I optimization problem: Give a list of vertices of a Hamiltonian cycle.

15 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 2.

Hamiltonian cycle: A Hamiltonian cycle is cycle that passes
through every vertex exactly once.

I decision problem: Does a given graph have a Hamiltonian cycle?

I optimization problem: Give a list of vertices of a Hamiltonian cycle.

15 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 3.

TSP (Traveling Salesperson Problem): given a weighted graph
and an integer k, is there a cycle that visits all vertices exactly
once (Hamiltonian cycle) whose total weight is k or less?

I optimization problem: given a weighted graph, find a minimum
Hamiltonian cycle.

I decision problem: given a weighted graph and an integer k, is there a
Hamiltonian cycle with total weight at most k?

16 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 3.

TSP (Traveling Salesperson Problem): given a weighted graph
and an integer k, is there a cycle that visits all vertices exactly
once (Hamiltonian cycle) whose total weight is k or less?

I optimization problem: given a weighted graph, find a minimum
Hamiltonian cycle.

I decision problem: given a weighted graph and an integer k, is there a
Hamiltonian cycle with total weight at most k?

16 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 3.

TSP (Traveling Salesperson Problem): given a weighted graph
and an integer k, is there a cycle that visits all vertices exactly
once (Hamiltonian cycle) whose total weight is k or less?

I optimization problem: given a weighted graph, find a minimum
Hamiltonian cycle.

I decision problem: given a weighted graph and an integer k, is there a
Hamiltonian cycle with total weight at most k?

16 / 17



1. Introduction

Optimization-vs-Decision Examples

Example 3.

TSP (Traveling Salesperson Problem): given a weighted graph
and an integer k, is there a cycle that visits all vertices exactly
once (Hamiltonian cycle) whose total weight is k or less?

I optimization problem: given a weighted graph, find a minimum
Hamiltonian cycle.

I decision problem: given a weighted graph and an integer k, is there a
Hamiltonian cycle with total weight at most k?

16 / 17



1. Introduction – recap

1. Tractable and intractable problems
polynomial-boundness: O(nk)

2. NP-complete problems – informal definition

3. P vs NP
difference may appear “only slightly”

4. Optimization problems and decision problems

17 / 17


