Review material for Midterm

v

9 Lecture notes from 4/4 to 4/25

Chapters 1, 2, 3
Sections 4.1, 4.2, 4.5
Sections 16.1, 16.2, 16.4

Problem sets 1, 2, 3 and 4

Solutions of problem sets

v

v

v

Topics

1. Math and proof-technique reivew
2. Order of growth

3. Recurrence relations

> linear recurences, divide-and-conquer recurrences.
» Explicit substituion for solving simple recurrence relations
> The master theorem/method for DC recurrences

4. Divide-and-conquer algorithms
5. Greedy algorithms

1. Math and proof-technique review

Math

1.
2.
3.

© N o ok

Set notation

Set of functions

Summation — see Appendix A.1
n

Arithmetic series: Zz =14+2+---+n="
i=1

n
Geometric series: sz =l4+ax+---+2"=7
in:Ol 1 1
Harmonic series: ;E =1+ §-~-+ - =7
Fibonacci numbers
Binomial coefficients
Floor and ceiling
Logarithm and exponential

L'Hopital’s rule

1. Math and proof-technique review
Proof-techniques
Proof by
» Definition (constructive existence)
Induction

>
» Contradiction
>

2. Order of Growth

Describe behaviors of functions in the limit ...

v

v

Asymptotic definitions (notations)

> O(g(n)) ={f(n): Jconst.c,np s.t.0 < f(n) < cg(n)foralln >mno}
> 2(g(n)) ={f(n) : Jconst.c,ng s.t.0 <cg(n) < f(n)for alln > ne}

» O(g(n)) = {f(n) : Iconst. c1, c2, no,
st 0<cig(n) < f(n) < cenforalln > no}

v

Proof by definition

v

Order of growth for frequently used functions:

lgn,...n,...,n" 2"

3. Recurrence relations

Types:

» Linear recurrences
Tn)=c1T(n—1)4+--+cxT(n—k)+ f(n)
» Divide-and-conquer recurrences:
n
T(n) = a-T(3) + ()

where @ > 1 and b > 1, and f(n) > 0.

Methods to find the solution of a recurrence relation

» Direct iteration /substitution for simple recurrences.

» The master theorem/method for DC recurrences

6/11

3. Recurrence relations
The master theorem for solving DC recurrences:
» Case 1: If n'°82 9 is polynomially larger than f(n), i.e,
nlogb a
fn)
then T'(n) = O(n'o%» @)
» Case 2: If n!°8»@ and f(n) are on the same order, i.e.,

f(n)

nlogy, a

= 2(n€) for some const. € > 0,

= 8(1)5

then T'(n) = O(n'°&» *1gn)
» Case 3: If f(n) is polynomially greater than n'°8:@ ..,

0 o

T for some const. € >0
nlog, a

and f(n) is regular, then T(n) = O(f(n))

4. Divide-and-conquer algorithms

Three-step:
» Divide the problem into a number of (independent) subproblems,
» Conquer the subproblems by solving them recursively,

» Combine the solutions to the subproblems into the solution of the
original problems.

4. Divide-and-conquer algorithms

Examples:

>

vV V. vV V. VvV VY

Merge sort

Max and Min

Search for A[i] =1 in an sorted array A
Maximum subarray

Strassen's algorithm

Closest pair in 1-D

k-way merge problem

Integer multiplication

9/11

5. Greedy algorithms

> A greedy algorithm always makes the choice that looks best at the
moment, without regard for future consequence
“take what you can get now” strategy

> The proof of the greedy algorithm producing the solution of maximum
size of compatible activities is based on the following two key
properties:
» The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

» The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

» Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

5. Greedy algorithms

Examples:

1. Activity selection problems
Job scheduling (homework 4)
Huffman coding
0-1 Knapsack problem

AR A

Money-change problem

11/11

