VI. Dynamic Programming
Dynamic Programming – Overview

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Developed back in the day (1950s) when “programming” meant “tabular method” (like linear programming)
- Used for optimization problems
 - Find a solution with the optimal value
 - Minimization or maximization
Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information
The rod cutting problem

▶ Problem statement:

\textit{How to cut a rod into pieces in order to maximize the revenue you can get?}

▶ Input:

1) a rod of length \(n \)
2) an array of prices \(p_i \) for a rod of length \(i \) for \(i = 1, \ldots, n \).

▶ Output:

1) the maximum revenue \(r_n \) obtainable for rods whose length sum to \(n \)
2) optimal cut, \textit{if necessary}.

The rod cutting problem

Example

<table>
<thead>
<tr>
<th>rod length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price p_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>r_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

- r_i: maximum revenue of a rod of length i
- s_i: optimal size of the first piece to cut
The rod cutting problem

A brute-force solution:

cut up a rod of length n *in* 2^{n-1} *different ways*

Cost: $\Theta(2^{n-1})$
The rod cutting problem

Dynamic Programming – Phase I:

Since every optimal solution r_n has a leftmost cut with length i, the optimal revenue r_n is given by

$$r_n = \max \{ p_1 + r_{n-1}, p_2 + r_{n-2}, \ldots, p_{n-1} + r_1, p_n + r_0 \}$$

$$= \max_{1 \leq i \leq n} \{ p_i + r_{n-i} \} \quad \text{(1)}$$

$$= p_{i_*} + r_{n-i_*} \quad \text{(2)}$$

where

$$i_* = \text{the index attains the maximum}$$

$$= \text{the length of the leftmost cut}$$
The rod cutting problem

Dynamic Programming – Phase II:

How to compute \(r_n \) by the expression (1) ?

1. Recursive solution:
 ▶ top-down, no memoization
 ▶ Cost:
 \[
 T(n) = 1 + \sum_{j=0}^{n-1} T(j) = \Theta(2^n)
 \]

2. Iterative solution
 ▶ bottom-up, memoization (Pseudocode – see next page)
 ▶ Cost:
 \[
 T(n) = \Theta(n^2)
 \]
The rod cutting problem

cut-rod(p,n)
// an iterative (bottom-up) procedure for finding ‘‘r’’ and
// the optimal size of the first piece to cut off ‘‘s’’
Let r[0...n] and s[0...n] be new arrays
r[0] = 0
for j = 1 to n
 // find q = max{p[i]+r[j-i]} for 1 <= i <= j
 q = -infty
 for i = 1 to j
 if q < p[i] + r[j-i]
 q = p[i] + r[j-i]
 s[j] = i
 end if
 end for
 r[j] = q
end for
return r and s
The rod cutting problem

Example

<table>
<thead>
<tr>
<th>rod length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price p_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>r_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

- r_i: maximum revenue of a rod of length i
- s_i: optimal size of the first piece to cut

Note: $s_i = i_*$ in expression (2).