Pseudocode

1. DFS(G) // main routine
2. for each vertex $u \in V$
3. do color[u] = "white"
4. endfor
5. time = 0
6. for each vertex $u \in V$ do // commonly processed in alphabetical order
7. if color[u] = "white" then
8. DFS-visit(u)
9. endif
10. endfor // end of main routine

1. DFS-visit(u) // subroutine
2. color[u] = "gray"
3. time = time + 1
4. $d[u] = time$ // discovery timestamp
5. for each $v \in \text{Adj}[u]$ do // commonly processed in alphabetical order
6. if color[v] = "white" then
7. DFS-visit(v)
8. color[u] = "black"
9. time = time + 1
10. $f[u] = time$ // finish timestamp

Classification of edges

- Tree edge (T): encounter new (white) vertex (gray to white)
- Back edge (B): from descendant to ancestor (gray to gray)
- Forward edge (F): from ancestor to descendant (gray to black)
- Cross edge (C): any other edges (between trees/subtrees) (gray to black)

Remarks

- In an undirected graph, there may be some ambiguity since edge (u, v) and (v, u) are the same edge. Classify by the first type above that matches.
- Therefore, if G is undirected, a DFS produces only tree (T) and back (B) edges.