Be aware that your homework should be your own work. It is a matter of intellectual honesty to write your homework strictly by yourself. Using solutions from any other source is not allowed.

1. Use mathematical induction to show that when n is a power of 2, $T(n) = n \log n$ is the solution of the recurrence relation

$$T(n) = \begin{cases}
2 & \text{if } n = 2 \\
2T\left(\frac{n}{2}\right) + n & \text{if } n = 2^k \text{ for } k > 1.
\end{cases}$$

2. Suppose we are comparing implementations of INSERT-SORT and MERGE-SORT on the same machine. For input of size $n = 2^k$ for $k \geq 1$, INSERT-SORT runs in $8n^2$ comparisons, while MERGE-SORT runs in $64n \log n$ comparisons. For which value of n does INSERT-SORT beat MERGE-SORT?

3. We can express INSERT-SORT as a recursive procedure as follows. In order to sort $A[1...n]$, we recursively sort $A[1...n-1]$ and then insert $A[n]$ into sorted array $A[1...n-1]$.

(a) Write the pseudocode for this recursive version of INSERT-SORT, name it INSERT-SORT-RECUR.

(b) Write a recurrence for the running time of INSERT-SORT-RECUR.

(c) Find the solution of this recurrence relation.

(d) Is INSERT-SORT-RECUR more expensive than INSERT-SORT?

4. Given an array $s = (s[1], s[2], \ldots, s[n])$, and $n = 2^d$ for some $d \geq 1$. We want to find the minimum and maximum values in s. We do this by comparing elements of s.

(a) The “obvious” algorithm makes $2n - 2$ comparisons. Explain.

(b) Can we do it better? Carefully specify a more efficient divide-and-conquer algorithm.

(c) Let $T(n) =$ the number of comparisons your algorithm makes. Write a recurrence relation for $T(n)$.

(d) Show that your recurrence relation has as its solution $T(n) = 3n/2 - 2$.

5. Let S be an array of n integers such that $S[1] < S[2] < \cdots < S[n]$. (1) Specify an $O(\log n)$ algorithm which either finds an $i \in \{1, 2, \ldots, n\}$ such that $S[i] = i$ or else determine that there is no such i. (2) Justify the correctness and running time of your algorithm.