Be aware that your homework should be your own work. It is a matter of intellectual honesty to write your homework strictly by yourself. Using solutions from any other source is not allowed.

1. Use mathematical induction to show that when \(n \) is a power of 2, \(T(n) = n \log n \) is the solution of the recurrence relation

\[
T(n) = \begin{cases}
2 & \text{if } n = 2 \\
2T\left(\frac{n}{2}\right) + n & \text{if } n = 2^k \text{ for } k > 1.
\end{cases}
\]

2. Suppose we are comparing implementations of INSERT-SORT and MERGE-SORT on the same machine. For input of size \(n = 2^k \) for \(k \geq 1 \), INSERT-SORT runs in \(8n^2 \) steps, while MERGE-SORT runs in \(64n \log n \) steps. For which value of \(n \) does INSERT-SORT beat MERGE-SORT?

3. We can express INSERT-SORT as a recursive procedure as follows. In order to sort \(A[1...n] \), we recursively sort \(A[1...n-1] \) and then insert \(A[n] \) into sorted array \(A[1...n-1] \).

 (a) Write the pseudocode for this recursive version of INSERT-SORT, name it INSERT-SORT-RECUR.

 (b) Write a recurrence for the running time of INSERT-SORT-RECUR.

 (c) Find the solution of this recurrence relation.

 (d) Is INSERT-SORT-RECUR more expensive than INSERT-SORT?

4. In this exercise, we consider a SELECTION-SORT algorithm. To sort \(n \) numbers stored in array \(a \), we first find the smallest element of \(A \) and exchanging it with the element in \(a[1] \). Then find the second smallest element of \(a \), and exchange it with \(a[2] \). Continue in this manner for the first \(n-1 \) element of \(a \).

 (a) Write a pseudocode for the SELECTION-SORT algorithm.

 (b) Analyze the running times.

5. Given an array \(s = \langle s[1], s[2], \ldots, s[n] \rangle \), and \(n = 2^d \) for some \(d \geq 1 \). We want to find the minimum and maximum values in \(s \). We do this by comparing elements of \(s \).

 (a) The “obvious” algorithm makes \(2n - 2 \) comparisons. Explain.

 (b) Can we do it better? Carefully specify a more efficient divide-and-conquer algorithm.

 (c) Let \(T(n) \) = the number of comparisons your algorithm makes. Write a recurrence relation for \(T(n) \).

 (d) Show that your recurrence relation has as its solution \(T(n) = 3n/2 - 2 \).

6. Let \(S \) be an array of \(n \) integers such that \(S[1] < S[2] < \cdots < S[n] \). (1) Specify an \(O(\log n) \) algorithm which either finds an \(i \in \{1, 2, \ldots, n\} \) such that \(S[i] = i \) or else determine that there is no such \(i \). (2) Justify the correctness and running time of your algorithm.