Be aware that your homework should be your own work. It is a matter of intellectual honesty to write your homework strictly by yourself. Using solutions from any other source is not allowed.

1. Use mathematical induction to show that when n is a power of 2, $T(n) = n \log n$ is the solution of the recurrence relation
\[
T(n) = \begin{cases}
2 & \text{if } n = 2 \\
2T\left(\frac{n}{2}\right) + n & \text{if } n = 2^k \text{ for } k > 1.
\end{cases}
\]

2. The Fibonacci numbers F_0, F_1, F_2, \ldots are defined by the rule
\[
F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n \geq 2.
\]
In this exercise you will confirm that this sequence grows exponentially fast and obtain some bounds on its growth:

(a) Use mathematical induction to prove that $F_n \geq 2^{0.5n}$ for $n \geq 6$.
(b) Find a constant $0 < c < 1$ such that $F_n \leq 2^n$ for all $n \geq 0$, and what is the largest c you can find?

3. We can express INSERT-SORT as a recursive procedure as follows. In order to sort $A[1\ldots n]$, we recursively sort $A[1\ldots n-1]$ and then insert $A[n]$ into sorted array $A[1\ldots n-1]$.

(a) Write the pseudocode for this recursive version of INSERT-SORT, name it INSERT-SORT-RECUR.
(b) Write a recurrence for the running time of of INSERT-SORT-RECUR.
(c) Find the solution of this recurrence relation.
(d) Is INSERT-SORT-RECUR more expensive than INSERT-SORT?

4. In this exercise, we consider a SELECTION-SORT algorithm. To sort n numbers stored in array a, we first find the smallest element of A and exchanging it with the element in $a[1]$. Then find the second smallest element of a, and exchange it with $a[2]$. Continue in this manner for the first $n-1$ element of a.

(a) Write a pseudocode for the SELECTION-SORT algorithm.
(b) Analyze the running times.

5. Given an array $s = (s[1], s[2], \ldots, s[n])$, and $n = 2^d$ for some $d \geq 1$. We want to find the minimum and maximum values in s. We do this by comparing elements of s.

(a) The “obvious” algorithm makes $2n - 2$ comparisons. Explain.
(b) Can we do it better? Carefully specify a more efficient divide-and-conquer algorithm.
(c) Let $T(n)$ = the number of comparisons your algorithm makes. Write a recurrence relation for $T(n)$.
(d) Show that your recurrence relation has as its solution $T(n) = 3n/2 - 2$.

6. Let S be an array of n integers such that $S[1] < S[2] < \cdots < S[n]$. (1) Specify an $O(\log n)$ algorithm which either finds an $i \in \{1, 2, \ldots, n\}$ such that $S[i] = i$ or else determine that there is no such i. (2) Justify the correctness and running time of your algorithm.