1. Use mathematical induction to show that when \(n \) is a power of 2, \(T(n) = n \lg n \) is the solution of the recurrence relation

\[
T(n) = \begin{cases}
2 & \text{if } n = 2 \\
2T(\frac{n}{2}) + n & \text{if } n = 2^k \text{ for } k > 1.
\end{cases}
\]

2. The Fibonacci numbers \(F_0, F_1, F_2, \ldots \) are defined by the rule

\[
F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n \geq 2.
\]

In this exercise you will confirm that this sequence grows exponentially fast and obtain some bounds on its growth:

(a) Use introduction to prove that \(F_n \geq 2^{0.5n} \) for \(n \geq 6 \).

(b) Find a constant \(0 < c < 1 \) such that \(F_n \leq 2^c n \) for all \(n \geq 0 \), and what is the largest \(c \) you can find?

3. We can express INSERT-SORT as a recursive procedure as follows. In order to sort \(A[1...n] \), we recursively sort \(A[1...n-1] \) and then insert \(A[n] \) into sorted array \(A[1...n-1] \).

(a) Write the pseudocode for this recursive version of INSERT-SORT, name it INSERT-SORT-RECUR.

(b) Write a recurrence for the running time of of INSERT-SORT-RECUR.

(c) Find the solution of this recurrence relation.

(d) Is INSERT-SORT-RECUR more expensive than INSERT-SORT?

4. In this exercise, we consider a SELECTION-SORT algorithm. To sort \(n \) numbers stored in array \(a \), we first find the smallest element of \(A \) and exchanging it with the element in \(a[1] \). Then find the second smallest element of \(a \), and exchange it with \(a[2] \). Continue in this manner for the first \(n-1 \) element of \(a \).

(a) Write a pseudocode for the SELECTION-SORT algorithm.

(b) Analyze the running times.

5. Given an array \(s = (s[1], s[2], \ldots, s[n]) \), and \(n = 2^d \) for some \(d \geq 1 \). We want to find the minimum and maximum values in \(s \). We do this by comparing elements of \(s \).

(a) The “obvious” algorithm makes \(2n - 2 \) comparisons. Explain.

(b) Can we do it better? Carefully specify a more efficient divide-and-conquer algorithm.

(c) Let \(T(n) = \) the number of comparisons your algorithm makes. Write a recurrence relation for \(T(n) \).

(d) Show that your recurrence relation has as its solution \(T(n) = 3n/2 - 2 \).

6. Let \(S \) be an array of \(n \) integers such that \(S[1] < S[2] < \cdots < S[n] \). (1) Specify an \(O(\log n) \) algorithm which either finds an \(i \in \{1, 2, \ldots, n\} \) such that \(S[i] = i \) or else determine that there is no such \(i \). (2) Justify the correctness and running time of your algorithm.