III. Divide-and-Conquer Recurrences and the Master Theorem
Divide-and-Conquer recurrences

- Divide-and-Conquer (DC) recurrence

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \]

where
- constants \(a \geq 1 \) and \(b > 1 \),
- function \(f(n) \) is nonnegative.
Divide-and-Conquer recurrences

▶ **Divide-and-Conquer (DC) recurrence**

\[
T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)
\]

where

▶ constants \(a \geq 1 \) and \(b > 1 \),
▶ function \(f(n) \) is nonnegative.

▶ **Example: the cost function of Merge Sort**

\[
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n
\]

where

▶ \(a = 2 \) (the number of subproblems)
▶ \(b = 2 \) (\(n/2 \) is the size of subproblems)
▶ \(f(n) = n \) (the cost to divide and combine)
Solving DC recurrences by explicit substitution

- Explicit substitution can be illustrated by the following example

\[
T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n, \quad n = 2^k
\]

- By iterating the recurrence (i.e. explicit substitution), we have

\[
T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n
\]

\[
= 4 \cdot \left(4 \cdot T\left(\frac{n}{2}\right) + \frac{n}{2}\right) + n = 4^2 \cdot T\left(\frac{n}{2^2}\right) + 2n + n
\]

\[
= 4^3 \cdot T\left(\frac{n}{2^3}\right) + 2^2n + 2n + n
\]

\[
= \cdots
\]

\[
= 4^k \cdot T\left(\frac{n}{2^k}\right) + 2^{k-1}n + \cdots + 2n + n
\]

\[
= 4^k \cdot T(1) + (2^{k-1} + \cdots + 2 + 1)n
\]

\[
= 4^k \cdot T(1) + \frac{2^k - 1}{2 - 1}n
\]

\[
= n^2 \cdot T(1) + n(n - 1) = \Theta(n^2)
\]
The master theorem/method to solve DC recurrences

For the general DC recurrence, let $n = b^k$, then we have

$$T(n) = n^{\log_b a} \cdot T(1) + \sum_{j=0}^{k-1} a^j f\left(\frac{n}{b^j}\right)$$
The master theorem/method to solve DC recurrences

- For the general DC recurrence, let $n = b^k$, then we have

$$ T(n) = n^{\log_b a} \cdot T(1) + \sum_{j=0}^{k-1} a^j f\left(\frac{n}{b^j}\right) $$

- By carefully analyzing the terms in $T(n)$, we can provide asymptotic bounds on the growth of $T(n)$ in the following three cases.
The master theorem/method to solve DC recurrences

Case 1: If $n^{\log_b a}$ is polynomially larger than $f(n)$, i.e.,

$$
\frac{n^{\log_b a}}{f(n)} = \Omega(n^\epsilon) \quad \text{for some constant } \epsilon > 0,
$$

then

$$
T(n) = \Theta(n^{\log_b a}).
$$

Example: $T(n) = 7 \cdot T\left(\frac{n}{2}\right) + \Theta(n^2)$
The master theorem/method to solve DC recurrences

Case 2: If \(n^{\log_b a} \) and \(f(n) \) are on the same order, i.e.,

\[
f(n) = \Theta(n^{\log_b a}),
\]

then

\[
T(n) = \Theta(n^{\log_b a} \log n).
\]

Example: \(T(n) = 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n) \)
Case 3: If $f(n)$ is polynomially greater than $n^{\log_b a}$, i.e.,

$$\frac{f(n)}{n^{\log_b a}} = \Omega(n^\epsilon) \quad \text{for some constant } \epsilon > 0$$

and $f(n)$ satisfies the regularity condition (see next slide), then

$$T(n) = \Theta(f(n)).$$

Example: $T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n^3$
Remarks

1. $f(n)$ satisfies the *regularity condition* if

 $$a \cdot f\left(\frac{n}{b}\right) \leq c f(n)$$

 for some constant $c < 1$ and for all sufficient large n.

2. The proof of the master theorem is involved, shown in section 4.6, which we can safely skip for now.

3. The master method cannot solve every DC recurrences.