1. The money changing problem starts with a given set of positive integers called denominations \(x_1, x_2, \ldots, x_n \) (think of them as the integers 1, 5, 10, and 25) and an integer \(A \), we want to find nonnegative integers \(a_1, \ldots, a_n \geq 0 \) such that

\[
A = \sum_{i=1}^{n} a_i x_i.
\]

2. First, we note that \(A \) can be expressed as a linear combination of the \(x_i \) if and only if \(x_i = 1 \) for some \(i \). Here is a proof.

If one of your denominations \(x_i \) is 1, you will certainly be able to express every integer \(A \) as \(\sum_{i=1}^{n} a_i x_i \) for some nonnegative integers \(a_1, \ldots, a_n \). Conversely, in order to express \(A = 1 \) as a linear combination, you must have \(x_i = 1 \) for some \(i \).

3. In general (not necessarily satisfying the condition in the first part), a necessary condition that \(A = \sum_{i=1}^{n} a_i x_i \) is that \(g = \gcd(x_1, \ldots, x_n) \) divides \(A \). In fact, \(g|A \) turns out to be both necessary and sufficient for \(A \geq X \) for some (large) \(X \). Here is a proof.

From the extended Euclidean algorithm we know we can write \(g = \sum_{i=1}^{n} g_i x_i \) with some possibly negative \(g_i \). Now let \(G = \sum_{i=1}^{n} |g_i| x_i, x_{\min} = \min_i x_i, k = x_{\min}/g, \) and \(X = kG \).

First note that the \(k \) consecutive multiples of \(g \) in the set \(S = \{kG, kG + g, kG + 2g, \ldots, kG + (k-1)g\} \) all have nonnegative coefficients when written as \(\sum_{i=1}^{n} a_i x_i \). The next multiple of \(g \) is \(kG + kg = kG + x_{\min} \), which has even larger nonnegative coefficients than \(kG \). The next \(k - 1 \) multiples of \(g \) consequently also have nonnegative coefficients until we get to \(kG + 2x_{\min} \), and so on.

Note that the coefficients are not necessarily unique (all the \(x_i \) could be identical), but we have shown that there is at least one set of nonnegative coefficients for all multiple of \(g \) at least equal to \(X \).

4. Optimal money changing problem is that for a given \(A \), find the nonnegative \(a_i \)'s that satisfy \(A = \sum_{i=1}^{n} a_i x_i \), and such that the sum of all \(a_i \)'s is minimal —that is, you use the smallest possible number of coins. Here is a greedy algorithm for solving this problem:

Order your denominations such that \(x_1 > x_2 > \cdots > x_n \). Then the greedy algorithm for this problem would be: Given \(A \), let \(a_1 \) be the largest integer such that \(a_1 x_1 \leq A \). If \(A - a_1 x_1 > 0 \), let \(a_2 \) be the largest integer such that \(a_2 x_2 \leq A - a_1 x_1 \). If you have nothing left over after doing this for \(i = 1, \cdots, n \), then \(A = \sum_{i=1}^{n} a_i x_i \).
5. Let us show that the greedy algorithm finds the optimum a_i's in the case of the denominations 1, 5, 10, and 25. Here is a proof.

Since 1 divides 5 and 5 divides 10, it is clear that if we have a case in which the greedy algorithm would not find the optimal solution, it must involve 25, i.e. A must be greater than 25. Assume the greedy algorithm does not find the optimal solution for A, $A > 25$. Then $A = \sum_{i=1}^{4} a_i x_i = \sum_{i=1}^{4} b_i x_i$ and $\sum_{i=1}^{4} a_i > \sum_{i=1}^{4} b_i$, where the a_i were determined by the greedy algorithm and the b_i are optimal in that $\sum_{i=1}^{4} b_i$ is minimal. W.l.o.g. $a_4 = b_4$ [since $a_4 \leq 4$ any change of the number of 1 cent coins must occur in 5 unit steps to give the same sum—this is obviously worse than changing b_3], in addition to that note that $a_3 \leq 1$.

By the above considerations we must have $a_1 > b_1$. Let $x := a_1 - b_1$. We have three cases to consider: $a_2 = b_2$, $a_2 > b_2$ and $a_2 < b_2$. If we set $y := a_2 - b_2$ then we can compute $b_3 = 5x + 2y + a_3$. Thus the number of coins changes by $\sum_{i=1}^{4} b_i - \sum_{i=1}^{4} a_i = 4x + y$. If we can show that this number is positive, this is a contradiction and we are done. In cases 1 and 2, x and y are ≥ 0. Therefore $4x + y$ is clearly positive.

In case 3, y is negative. But, as we have to ensure that $b_3 = 5x + 2y + a_3$ is ≥ 0 and we know that a_3 is at most 1, we have $y \geq -\frac{5}{2}x - \frac{1}{2}$. Hence $4x + y \geq \frac{3}{2}x - \frac{1}{2}$ and it is again positive.

6. You can extend this problem and ask “What are good necessary and sufficient conditions on a currency such that the greedy algorithm always gives the minimum amount of coins.” This problem is still open. Partial answers and a light-hearted discussion give:

