Here is a list of concepts, definitions and algorithms that you should know from lectures, discussions and homework assignments #4, #5 and #6. This is not meant to be comprehensive. It is merely a reminder of what we need to review for the upcoming midterm exam II.

Algorithms and case studies

1. Greedy Algorithms
 - Activity selection problems
 - Huffman coding
 - 0-1 Knapsack problem

2. Dynamic Programming
 - Rod cutting problem
 - Matrix-chain multiplication
 - Longest common subsequence/substring
 - 0-1 Knapsack problem

3. Elementary graph algorithms
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Applications:
 - Topological sort of a dag
 - Finding a sink
 - Finding the connected components of a undirected graph
 - Determining whether a graph contains a cycle

Definitions, concepts and data structures

1. Elements of greedy algorithms
2. Elements of dynamics programming
3. Graph terminology: graph, path, connected graph, cycle, acyclic, dag, tree, spanning tree ...
4. Graph representations: adjacency matrix, incidence matrix, adjacency list
5. Data structures:
 - FIFO queue
 - LIFO stack