Here are a list of concepts, definitions, algorithms, design and analysis techniques that you should know from the class, including homeworks and midterms. This is not meant to be comprehensive. It is merely a reminder of what we need to review for the upcoming final exam.

I. Algorithms, design and analysis techniques, examples

1. Divide and Conquer
 - The three-steps of a divide and conquer algorithm
 - Examples:
 - Computing the nth Fibonacci number (vs. recursive)
 - MergeSort (vs. Insert sort)
 - Maximum subarrays
 - Strassen’s algorithm for matrix multiplication
 - Closest pair of points in 1D

2. Greedy Algorithms
 - Two elements of greedy algorithms
 - Examples:
 - Activity selection
 - Huffman coding
 - Minimum spanning tree: Prim’s and Kruskal’s algorithms
 - Knapsack problem (a counterexample)

3. Dynamic Programming
 - Two elements of dynamic programming
 - Examples:
 - Rod cutting
 - Matrix-chain multiplication
 - Longest common subsequence/substring
 - Knapsack problem

4. Graph algorithms
 - Elementary graph algorithms
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Applications
 * Topological sort of a DAG
 * Finding a sink
 * Finding connected components of a undirected graph
 * Detecting a cycle
II. NP-completeness

1. Tractable and intractable problems

2. Examples of intractable problems:
 Circuit-satisfiability (SAT), Graph-coloring, Hamiltonian-cycle (HC), Traveling-salesperson-problem (TSP), Knapsack-problem, Prime-testing, Subset-sum, Set-partition, Bin-packing, Vertex-cover.

3. Optimization problem and decision problem

4. Polynomial reduction/transformation

5. Formal definitions of P, NP, NP-complete and NP-hard

6. How to prove a problem is NP-completeness
 - The logic behind the method of proof
 - Three case studies:
 - undirected HC is NPC (from the fact that directed HC is NPC)
 - 4-color problem is NPC (from the fact that 3-color is NPC)
 - Set partition is NPC (from the fact that Subset Sum is NPC)

7. Case studies of approximate algorithms (optional):
 Bin-packing and Vertex-cover

III. Definitions, concepts and data structures

1. Growth of functions and asymptotic notations: $O(f(n)), \Omega(f(n)), \Theta(f(n))$

2. Linear recurrence relations

3. Divide-and-conquer recurrence relations

4. The master method/theorem for solving divide-and-conquer recurrence relations

5. Definitions of graph, path, connected graph, connected component, cycle, acyclic, tree, spanning tree, ...

6. Graph representations: adjacency list, adjacency matrix, incidence matrix.

7. Data structures:
 - FIFO queue and LIFO stack – enqueue, dequeue
 - Priority queue – Insert(S,u), Extract-Min(S), Decrease-Key(S,u,k), ...
 - Disjoint-set – Make-set(u), Union(u,v), Find-set(u)