1. Not all matrices have the LU factorization. The LU factorization can fail on nonsingular matrices. For example,

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 1 \\
2 & 3 & 1
\end{array}\right] \neq L U .
$$

2. A permutation matrix P is an identity matrix with permuted rows.

Let P, P_{1}, P_{2} be $n \times n$ permutation matrices, and X be an $n \times n$ matrix. Then

- $P^{T} P=I$, i.e., $P^{-1}=P^{T}$.
- $\operatorname{det}(P)= \pm 1$.
- $P_{1} P_{2}$ is also a permutation matrix.
- $P X$ is the same as X with its rows permuted.
- $X P$ is the same as X with its columns permuted.
- $P_{1} X P_{2}$ reorders both rows and columns of X.

3. The need of pivoting, mathematically

The LU factorization can fail on nonsingular matrices, see the above example. But by exchanging the first and third rows, we get

$$
P A=\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & 2 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & 2 & 1 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]:=L U .
$$

This avoids "the breakdown" in the elimination process.
4. The above simple observation is the basis for the LU factorization with pivoting.

Theorem. If A is nonsingular, then there exist permutations P, a unit lower triangular matrix L, and a nonsingular upper triangular matrix U such that

$$
P A=L U .
$$

5. The need for pivoting, numerically

Let us apply LU factorization without pivoting to

$$
A=\left[\begin{array}{cc}
.0001 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
10^{-4} & 1 \\
1 & 1
\end{array}\right]=L U=\left[\begin{array}{cc}
1 & \\
l_{21} & 1
\end{array}\right]\left[\begin{array}{ll}
u_{11} & u_{12} \\
& u_{22}
\end{array}\right]
$$

in three decimal-digit floating point arithmetic. We obtain

$$
\begin{aligned}
L & =\left[\begin{array}{cc}
1 & 0 \\
\mathrm{fl}\left(1 / 10^{-4}\right) & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10^{4} & 1
\end{array}\right], \\
U & =\left[\begin{array}{cc}
10^{-4} & 1 \\
& \mathrm{fl}\left(1-10^{4} \cdot 1\right)
\end{array}\right]=\left[\begin{array}{cc}
10^{-4} & 1 \\
& -10^{4}
\end{array}\right]
\end{aligned}
$$

SO

$$
L U=\left[\begin{array}{cc}
1 & 0 \\
10^{4} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-4} & 1 \\
& -10^{4}
\end{array}\right]=\left[\begin{array}{cc}
10^{-4} & 1 \\
1 & 0
\end{array}\right] \not \approx A,
$$

where the original a_{22} has been entirely "lost" from the computation by subtracting 10^{4} from it. In fact, we would have gotten the same LU factors whether a_{22} had been $1,0,-2$, or any number such that $\mathrm{fl}\left(a_{22}-10^{4}\right)=-10^{4}$. Since the algorithm proceeds to work only with L and U, it will get the same answer for all these different a_{22}, which correspond to completely different A and so completely different $x=A^{-1} b$; there is no way to guarantee an accurate answer. This is called numerical instability. L and U are not the exact factors of a matrix close to A.
Let us see what happens when we go on to solve $A x=[1,2]^{T}$ for x using this LU factorization. The correct answer is $x \approx[1,1]^{T}$. Instead we get the following. Solving

$$
L y=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow y_{1}=\mathrm{fl}(1 / 1)=1 \text { and } y_{2}=\mathrm{f}\left(2-10^{4} \cdot 1\right)=-10^{4} .
$$

Note that the value 2 has been "lost" by subtracting 10^{4} from it. Solving

$$
U x=y=\left[\begin{array}{c}
1 \\
-10^{4}
\end{array}\right] \Rightarrow \hat{x}_{2}=\mathrm{f}\left(\left(-10^{4}\right) /\left(-10^{4}\right)\right)=1 \text { and } \hat{x}_{1}=\mathrm{f}\left((1-1) / 10^{-4}\right)=0,
$$

a completely erroneous solution.
On the other hand, the LU factorization with partial pivoting would have reversed the order of the two equations before proceeding. You can confirm that we get

$$
P A=L U,
$$

where

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad L=\left[\begin{array}{cc}
1 & 0 \\
\mathrm{f}(.0001 / 1) & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
.0001 & 1
\end{array}\right],
$$

and

$$
U=\left[\begin{array}{cc}
1 & 1 \\
& \mathrm{fl}(1-.0001 \cdot 1)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right] .
$$

The computed LU approximates A very accurately. As a result, the computed solution x is perfect (verify that $\left[\begin{array}{l}\hat{x}_{1} \\ \hat{x}_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.)
6. Solving $A x=b$ using the LU factorization

1. Factorize A into $P A=L U$
2. Permute the entries of $b: b:=P b$.
3. Solve $L(U x)=b$ for $U x$ by forward substitution:

$$
U x=L^{-1} b .
$$

4. \quad Solve $U x=L^{-1} b$ for x by back substitution:

$$
x=U^{-1}\left(L^{-1} b\right) .
$$

7. Matlab demo functions: lutx.m and bslashtx0.m
