1. Let $A \in \mathbb{C}^{n \times n}$.
(a) A scalar $\lambda$ is an eigenvalue of an $n \times n A$ and a nonzero vector $x \in \mathbb{C}^{n}$ is a corresponding (right) eigenvector if

$$
A x=\lambda x .
$$

(b) A nonzero vector $y$ is called a left eigenvector if

$$
y^{H} A=\lambda y^{H} .
$$

(c) The set of all eigenvalues of $A$, denoted as $\lambda(A)$, is called the spectrum of $A$.
(d) The characteristic polynomial of $A$ is a polynomial of degree $n$, and defined as

$$
p(\lambda)=\operatorname{det}(\lambda I-A) .
$$

2. The following is a list of properties straightforwardly from above definitions:
(a) $\lambda$ is $A$ 's eigenvalue $\Leftrightarrow \lambda I-A$ is singular $\Leftrightarrow \operatorname{det}(\lambda I-A)=0 \Leftrightarrow p(\lambda)=0$.
(b) There is at least one eigenvector $x$ associated with $A$ 's eigenvalue $\lambda$.
(c) Suppose $A$ is real. $\lambda$ is $A$ 's eigenvalue $\Leftrightarrow$ conjugate $\bar{\lambda}$ is also $A$ 's eigenvalue.
(d) $A$ is singular $\Leftrightarrow 0$ is $A$ 's eigenvalue.
(e) If $A$ is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries. (Question: what if $A$ is a block upper (or lower) triangular matrix ?).
3. Schur decomposition. Let $A$ be of order $n$. Then there is an $n \times n$ unitary matrix $U$ (i.e., $U^{H} U=I$ ) such that

$$
A=U T U^{H}
$$

where $T$ is upper triangular and the diagonal elements of $T$ are the eigenvalues of $A$.
4. When $A$ is Hermitian, i.e., $A^{H}=A$, then by Schur decomposition, we know that there exist an unitary matrix $U$ such that

$$
A=U \Lambda U^{H},
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Furthermore, all eigenvalues $\lambda_{i}$ are real.
This result is also known as Spectral Theorem, considered a crowning result of linear algebra.
5. $A \in \mathbb{C}^{n \times n}$ is simple if it has $n$ linearly independent eigenvectors; otherwise it is defective.

Examples.
(a) $I$ and any diagonal matrices is simple. $e_{1}, e_{2}, \ldots, e_{n}$ are $n$ linearly independent eigenvectors.
(b) $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$ is simple. It has two different eigenvalues -1 and 5 , it has 2 linearly independent eigenvectors: $\frac{1}{\sqrt{2}}\binom{-1}{1}$ and $\frac{1}{\sqrt{5}}\binom{1}{2}$.
(c) If $A \in \mathbf{C}^{n \times n}$ has $n$ different eigenvalues, then $A$ is simple.
(d) $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$ is defective. It has two repeated eigenvalues 2 , but only one eigenvector $e_{1}=(1,0)^{T}$.
6. Eigenvalue decomposition
$A \in \mathbb{C}^{n \times n}$ is simple if and only if there exisits a nonsingular matrix $X \in \mathbf{C}^{n \times n}$ such that

$$
A=X \Lambda X^{-1}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. In this case, $\lambda_{i}$ are eigenvalues, and the columns of $X$ are eigenvectors, and $A$ is called diagonalizable).
7. Two $n \times n$ matrices $A$ and $B$ are similar if there is an $n \times n$ non-singular matrix $P$ such that $B=P^{-1} A P$. We also say $A$ is similar to $B$, and likewise $B$ is similar to $A ; P$ is a similarity transformation. $A$ is unitarily similar to $B$ if $P$ is unitary.

Proposition. Suppose that $A$ and $B$ are similar: $B=P^{-1} A P$.
(a) $A$ and $B$ have the same eigenvalues. In fact $p_{A}(\lambda) \equiv p_{B}(\lambda)$.
(b) $A x=\lambda x \Rightarrow B\left(P^{-1} x\right)=\lambda\left(P^{-1} x\right)$.
(c) $B w=\lambda w \Rightarrow A(P w)=\lambda(P w)$.

