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Power method.

1. Power iteration:

Given an initial vector u0,
i = 0
repeat
ti+1 = Aui
ui+1 = ti+1/‖ti+1‖2 (approximate eigenvector)
θi+1 = uHi+1Aui+1 (approximate eigenvalue)
i = i+ 1

until convergence

2. Stopping criterion: |θi+1 − θi| ≤ tol · |θi|.

3. Example: Let

A =

 −261 209 −49
−530 422 −98
−800 631 −144

 .
and λ(A) = {10, 4, 3}. Let u0 = (1, 0, 0)T , then

i 1 2 3 · · · 10
θi 994.49 13.0606 10.07191 · · · 10.0002

4. Convergence analysis: Assume that A is diagonalizable, i.e.,

A = XΛX−1

with Λ = diag(λ1, λ2, . . . , λn) and |λ1| > |λ2| ≥ . . . ≥ |λn|. Then, we can show that

• ui = Aiu0
‖Aiu0‖ → x1/‖x1‖, where x1 = Xe1 as i→∞.

• θi → λ1 as i→∞.

• The convergence rate depends on |λ2||λ1| .

5. Therefore, if |λ2||λ1| is close to 1, then the power method could be very slow convergent or doesn’t
converge at all.
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Inverse iteration.

1. Purposes:

• Overcome the drawbacks of the power method (slow convergence)

• find an eigenvalue closest to a particular given number (called shift): σ

2. Observation: if λ is an eigenvalue of A, then

• λ− σ is an eigenvalue of A− σI,

• 1
λ−σ is an eigenvalue of (A− σI)−1.

1/(\lambda-\sigma)

\sigma

3. Inverse iteration

Given an initial vector u0 and a shift σ
i = 0
repeat

solve (A− σI)ti+1 = ui for ti+1

ui+1 = ti+1/‖ti+1‖2 (approximate eigenvector)
θi+1 = uHi+1Aui+1 (approximate eigenvalue)
i = i+ 1

until convergence

4. Convergence analysis: Assume A = XΛX−1 with Λ = diag(λ1, λ2, . . . , λn) and λk is the eigenvalue
cloest to the shift σ. It can be shown that

• ui → xk/‖xk‖ as i→∞, where xk = Xek

• θi converges to λk i→∞.

• Convergence rate depends on maxj 6=k
|λk−σ|
|λj−σ| .

5. Advantages: (a) the ability to converge to any desired eigenvalue (the one nearest to the shift σ).
(b) By choosing σ very close to a desired eigenvalue, the method converges very quickly and thus
not be as limited by the proximity of nearby eigenvalues as is the original power method. (c) The
method is particularly effective when we have a good approximation to an eigenvalue and want
only its corresponding eigenvector.

6. Drawbacks: (a) expensive in general: solving (A − σI)ti+1 = ui for ui+1. One LU factorization
of A − σI is required, which could be very expensive for large matrices, (b) Only compute one
eigenpair.
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Orthogonal iteration (subspace iteration, simultaneous iteration).

1. Purpose: compute p > 1 eigenvalues (and eigenvectors), rather than one eigenvector at a time.

2. Orthogonal iteration

Given an initial n× p orthogonal matrix Z0

i = 0
repeat
Yi+1 = AZi
Yi+1 = Zi+1Ri+1 (QR decomposition)
i = i+ 1

until convergence

The use of QR decomposition keeps the vectors spanning span{AiZ0} of full rank.

3. Example: Let Z0 = [e1, e2, e3] and

A =

-0.4326 1.1892 -0.5883 -0.0956 -0.6918 -0.3999

-1.6656 -0.0376 2.1832 -0.8323 0.8580 0.6900

0.1253 0.3273 -0.1364 0.2944 1.2540 0.8156

0.2877 0.1746 0.1139 -1.3362 -1.5937 0.7119

-1.1465 -0.1867 1.0668 0.7143 -1.4410 1.2902

1.1909 0.7258 0.0593 1.6236 0.5711 0.6686

Eigenvalues of A = -2.1659 +- 0.5560i, 2.1493, 0.2111 +- 1.9014i, -0.9548

i = 10: Eigenvalues of Z’_10*A*Z_10: -1.4383 +- 0.3479i, 2.1500

i = 30: Eigenvalues of Z’_30*A*Z_30: -2.1592 +- 0.5494i, 2.1118

i = 70: Eigenvalues of Z’_70*A*Z_70: -2.1659 +- 0.5560i, 2.1493

4. Convergence: under mild conditions, Zi converges to the invariant subspace spanned by the first
p eigenvectors corresponding to the p dominant eigenvalues, where

|λ1| ≥ |λ2| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|.

If we let Bi = ZTi AZi, then
‖AZi − ZiBi‖ → 0 as i→∞

and eigenvalues of Bi approximate the dominant eigenvalues of A.

Convergence rate depends on |λp+1|/|λp|.
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QR iteration.

1. Our goal is to reorganize orthogonal iteration to incorporate shifting and inverting as in the inverse
iteration. This will make it more efficient and eliminate the assumption that eigenvalues differ in
magnitude.

2. QR iteration

A0 = A
i = 0
repeat
Ai = QiRi (QR decomposition)
Ai+1 = RiQi
i = i+ 1

until convergence

3. (i) Observe that Ai+1 = RiQi = QTi QiRiQi = QTi AiQi. Therefore it performs an orthogonal
similarity transformation at each iteration.

(ii) Ai+1 is orthogonally similar to A0 = A. Therefore Ai+1 and A have same eigenvalues:

Ai+1 = (Q0Q1 · · ·Qi−1Qi)TA(Q0Q1 · · ·Qi−1Qi).

Note that Q0 · · ·Qi−1Qi is an orthogonal matrix since all Qj are.

4. Example. The same test matrix, numerical results of QR iteration

A_10 =

-1.6994 0.2201 -0.8787 -1.4292 -0.3847 0.0112

-0.0007 1.1325 1.2186 1.2245 -0.0867 0.0648

0.2637 1.9636 -0.1598 -2.3959 0.8136 -0.4311

0.0364 -0.2346 -0.5527 -0.4393 -1.9263 1.2496

0.4290 1.3482 -1.1484 0.6121 -0.5937 0.2416

0.0003 0.0013 -0.0003 -0.0011 0.0014 -0.9554

A_30 =

-2.4055 -1.0586 1.3420 -0.0991 1.1210 0.1720

0.0517 0.9645 1.6519 -0.8512 -0.7215 0.7654

-0.2248 1.9947 -0.7656 -1.1876 -0.2736 -0.1552

-0.0029 -0.0263 -0.0682 0.1381 -2.3094 0.6765

-0.0147 0.0808 -0.0569 1.5462 0.3082 -0.8476

0.0000 0.0000 0.0000 0.0000 0.0000 -0.9548

From the last rwo of A30, we can conclude -0.9548 is an eigenvalue of A. The subsequent QR
iterations are performed on the leading 4× 4 submatrices to find the rest of eigenvalues.
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QR iteration with shifts ⇒ QR Algorithm.

1. Purpose: accelerate the convergence of QR iteration by using shifts

2. QR iteration with shifts

A0 = A; i = 0
repeat

Choose a shift σi
Ai − σiI = QiRi (QR decomposition)
Ai+1 = RiQi + σiI
i = i+ 1

until convergence

3. Property: Ai and Ai+1 are orthogonally similar: Ai+1 = QTi AiQi. Therefore, Ai+1 and A are
orthogonally similar, and Ai+1 and A have the same eigenvalues.

4. How to choose the shifts σi?

• If σi is an exact eigenvalue of A, then it can be shown that

Ai+1 = RiQi + σiI =

[
A′ a
0 σi

]
.

This means that the algorithm converges in one iteration. If more eigenvalues are wanted,
we can apply the algorithm again to the n− 1 by n− 1 matrix A′.

• In practice, a common choice of the σi is

σi = Ai(n, n).

A motivation of this choice is by observing that the convergence of the QR iteration (without
a shift), the (n, n) entry of Ai usually converges to an eigenvalue of A first.

5. Example. The same test matrix as before. The following is the numerical result of QR iteration
with a shift.

• With the shift σ0 as an exact eigenvalue σ0 = 2.1493, then

A_1 =

-1.4127 1.4420 1.0845 -0.6866 -0.1013 -0.2042

-1.2949 -0.2334 1.4047 -1.3695 1.5274 -0.7062

0.5473 0.1343 -0.7991 -0.6716 1.1585 0.0736

-0.2630 0.0284 0.5440 -1.4616 -1.5892 0.9205

-1.6063 -0.3898 0.3410 0.1623 -0.9576 -0.5795

0.0000 0.0000 0.0000 0.0000 0.0000 2.1493

We observe that in one iteration, we have found an eigenvalue 2.1493 of A (from the last row).
The subsequent QR iterations with shift are performed on the leading 4× 4 submatrices to
find the rest of eigenvalues.
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• With the shifts σi = Ai(n, n).

A_7 =

-2.4302 2.0264 -0.2799 -0.2384 0.3210 -0.0526

-0.1865 -1.4295 -1.3515 0.0812 0.8577 -0.0388

-0.1087 -0.8991 0.4491 0.4890 -1.8463 -1.2034

-0.0008 0.0511 -0.5997 -0.7839 -0.8088 -0.5188

-0.0916 -0.8273 1.6940 0.0645 -0.6698 -0.0854

0.0000 0.0000 0.0000 0.0000 0.0000 2.1493

We observe that with 7th iterations, from the last row, we have found an eigenvalue 2.1493 of
A (from the last row). The subsequent QR iterations with shift are performed on the leading
4× 4 submatrices to find the rest of eigenvalues.

6. Note that the QR decomposition in the algorithm takes O(n3) flops. Even if the algorithm took
n iterations to converge, the overall cost of the algorithm will be O(n4). This is too expensive
(today, the complexity of algorithms for all standard matrix computation problems is at O(n3).)
However, if the matrix is initially reduced to upper Hessenberg form, then the QR decomposition
of a Hessenberg form costs O(n2) flops. As a result, the overall cost of the algorithm is reduced
to O(n3). This is referred to as the Hessenberg QR algorithm, the method of choice for dense
eigenvalue problem today, say Matlab’s eigensolver eig use LAPACK’s implementation of the
QR algorithm.

7. QR algorithm is ranked as one of the top 10 algorithms invented in the 20th century.
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