1. Singular Value Decomposition (SVD)

Any *m*-by-*n* matrix A with $m \ge n$ can be written as

$$A = U\Sigma V^T,$$

where U is m-by-n orthogonal matrix $(U^T U = I_n)$ and V is n-by-n orthogonal matrix $(V^T V = I)$, and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n)$, where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

Nonnegative scalar $\sigma_1, \sigma_2, \ldots, \sigma_n$ are called *singular values*. The columns $\{u_i\}$ of U are called *left singular vectors* of A. The columns $\{v_i\}$ of V are called *right singular vectors*.

If m < n, the SVD can be defined by considering A^T .

- 2. Connection (difference) between eigenvalues and singular values.
 - (a) Eigenvalues of $A^T A$ are σ_i^2 for i = 1, 2, ..., n. The corresponding eigenvectors are the right singular vectors v_i for i = 1, 2, ..., n.
 - (b) Eigenvalues of AA^T are σ_i^2 for i = 1, 2, ..., n and m n zeros. The left singular vectors u_i for i = 1, 2, ..., n are corresponding eigenvectors for the eigenvalues σ_i^2 . Any m n orthogonal vectors that are orthogonal to $u_1, u_2, ..., u_n$ as the eigenvectors for the zero eigenvalues.
- 3. Suppose that

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0,$$

Then

- (a) the rank of A is r,
- (b) the column space of A is spanned by $[u_1, u_2, \cdots, u_r]$.
- (c) the nullspace of A is spanned by $[v_{r+1}, v_{r+2}, \ldots, v_n]$.
- 4. The matrix norm $||A||_2$ induced the vector 2-norm

$$||A||_2 \equiv \max_{0 \neq x \in \mathbb{R}^n} \frac{||Ax||_2}{||x||_2} = \sigma_1 = \sqrt{\lambda_{\max}(A^T A)}.$$

5. Suppose that A has full column rank, then the pseudo-inverse can also be written as¹

$$A^+ \equiv (A^T A)^{-1} A^T = V \Sigma^{-1} U^T.$$

6. The SVD of A can be rewritten as

$$A = E_1 + E_2 + \dots + E_r$$

where $r = \operatorname{rank}(A)$, E_k for i = 1, 2, ..., r is a rank-one matrix of the form

$$E_k = \sigma_k u_k v_k^T,$$

¹If m < n, then $A^+ = A^T (AA^T)^{-1}$.

and is referred to as the k-th *component* matrix. Component matrices are orthogonal to each other, i.e.,

$$E_j E_k^T = 0, \quad j \neq k.$$

Furthermore, since $||E_k||_2 = \sigma_k$, we know that

$$||E_1||_2 \ge ||E_2||_2 \ge \dots \ge ||E_r||_2.$$

It means that the contribution each E_k makes to reproduce A is determined by the size of the singular value σ_k ,

7. Optimal rank-k approximation (Eckart-Young Theorem):

$$\min_{\substack{B \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(B) = k}} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1},$$

where

$$A_k = E_1 + E_2 + \dots + E_k = U_k \Sigma_k V_k^T,$$

where $\Sigma_k = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_k)$, U_k and V_k are the first k columns of U and V, respectively. A_k is called a *truncated SVD*.

- 8. The problem of applying the leading k components of A to analyze the data in the matrix A is called *Principal Component Analysis (PCA)*.
- 9. An application of PCA for lossy data compression.

Note that A_k is represented by mk + k + nk = (m + n + 1)k elements, in contrast, A is represented by mn elements. Therefore, we have

compression ratio =
$$\frac{(m+n+1)k}{mn}$$

Matlab script: svd4image.m