1. Let A be nonsingular, and let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0$ be its singular values.
(a) Find the SVD of A^{-1} in terms of the SVD of A. What are the singular values and singular vectors of A^{-1} ?
(b) Deduce that $\left\|A^{-1}\right\|_{2}=\sigma_{n}^{-1}$ and $\operatorname{cond}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\sigma_{1} / \sigma_{n}$, where $\operatorname{cond}(A)$ is the condition number of A.
2. Ex 7.1
3. Ex 7.3
4. If $A=a b^{T}$, where $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, what is the first (largest) singular triplet (σ_{1}, u_{1}, v_{1})?
5. (a) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Determine the SVD of A from the eigenvalue decomposition of A.
(b) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and indefinite. Determine the SVD of A from the eigenvalue decomposition of A.
6. Let $A \in \mathbb{R}^{n \times n}$ of full rank. Use the SVD to determine a polar decomposition of A, i.e., $A=Q P$ where Q is orthogonal, and $P=P^{T}>0$.
Note: (1) this is analogous to the polar form $z=r e^{i \theta}$ of a complex scalar z, where $i=\sqrt{-1}$.
(2) Inspired to learn more about the polar decomposition. Try the problems in Exercise 7.8.
(3) The plar decomposition has wide applications, such as animation.
7. Ex. 7.10 ("Latent semantic analysis") - option
