1. Exercise 8.8
2. Consider the following cubic polynomial

$$
p(x)=816 x^{3}-3835 x^{2}+6000 x-3125 .
$$

It has three three closely spaced roots: $25 / 15,25 / 16,25 / 17$
(a) Plot $p(x)$ for $1.43 \leq x \leq 1.71$. Show the location of the three roots.
(b) Starting with the interval $[1,2]$, what does the bisection method do?
(b) Starting with $x_{0}=1.5$, what does Newton's method do?
(c) Starting with $x_{0}=1$ and $x_{1}=2$, what does the secant metod do?
3. Investigate the behavior of the secant method on the function

$$
f(x)=\operatorname{sign}(x-2) \sqrt{|x-2|} .
$$

Hint: start from" $z e r o s e g 3 . m "$ from our class website.
4. Let

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}-x_{2}\right)^{2}+\frac{1}{2}\left(1-x_{1}\right)^{2}
$$

(a) What is the minimizer of $f\left(x_{1}, x_{2}\right)$?
(b) Compute one iteration of Newton's method for minimizing $f\left(x_{1}, x_{2}\right)$ starting from the point $(2,2)$. Is this a good step?
5. Let

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+\frac{9}{2} x_{2}^{2}
$$

It's easy to see that the minimizer is $x_{*}=(0,0)$
(a) Derive the steepest descent method for finding the minimzer of of $f(x)$.
(b) Compute the first four iterations starting from the point $(9,1)$.

