Introduction to Deep Learning

Is it a question?

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Is it a question?

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Question? How to classify the rest of points, say where should we propose a new drilling site for the desired outcome?

Al via Machine Learning

1. Al via Machine Learning has advanced radically over the past 10 year.

Al via Machine Learning

1. Al via Machine Learning has advanced radically over the past 10 year.
2. ML algorithms now achieve human-level performance or better on the tasks such as

Al via Machine Learning

1. Al via Machine Learning has advanced radically over the past 10 year.
2. ML algorithms now achieve human-level performance or better on the tasks such as

- face recognition
- optical character recognition
- speech recognition
- object recognition
- playing the game Go - in fact, defeated human champions

Al via Machine Learning

1. Al via Machine Learning has advanced radically over the past 10 year.
2. ML algorithms now achieve human-level performance or better on the tasks such as

- face recognition
- optical character recognition
- speech recognition
- object recognition
- playing the game Go - in fact, defeated human champions

3. Deep Learning becomes the centerpiece of ML toolbox.

Deep Learning

- Deep Learning $=$ multilayered Artificial Neural Network (ANN).

Deep Learning

- Deep Learning $=$ multilayered Artificial Neural Network (ANN).
- A simple ANN with four layers

Deep Learning

- An ANN in a mathematically term

Deep Learning

- An ANN in a mathematically term

$$
F(x)=\sigma\left(W^{[4]} \underline{\sigma\left(W^{[3]} \underline{\sigma\left(W^{[2]} x+b^{[2]}\right)}+b^{[3]}\right)}+b^{[4]}\right)
$$

Deep Learning

- An ANN in a mathematically term

$$
F(x)=\sigma\left(W^{[4]} \sigma\left(W^{[3]} \underline{\sigma\left(W^{[2]} x+b^{[2]}\right)}+b^{[3]}\right)+b^{[4]}\right)
$$

where

- $p:=\left\{\left(W^{[2]}, b^{[2]}\right),\left(W^{[3]}, b^{[3]}\right),\left(W^{[4]}, b^{[4]}\right)\right\}$ are parameters to be "trained/computed" from training data.
- $\sigma(\cdot)$ is an activiation function, say sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Deep Learning

- The objective of training is to "minimize" a properly defined cost function, say

$$
\min _{p} \operatorname{Cost}(p) \equiv \frac{1}{m} \sum_{i=1}^{m}\left\|F\left(x^{(i)}\right)-y^{(i)}\right\|_{2}^{2},
$$

where $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}$ are training data

Deep Learning

- The objective of training is to "minimize" a properly defined cost function, say

$$
\min _{p} \operatorname{Cost}(p) \equiv \frac{1}{m} \sum_{i=1}^{m}\left\|F\left(x^{(i)}\right)-y^{(i)}\right\|_{2}^{2},
$$

where $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}$ are training data

- Steepest/gradient descent

$$
p \longleftarrow p-\tau \nabla \operatorname{Cost}(p)
$$

where τ is known as the learning rate.

Deep Learning

- The objective of training is to "minimize" a properly defined cost function, say

$$
\min _{p} \operatorname{Cost}(p) \equiv \frac{1}{m} \sum_{i=1}^{m}\left\|F\left(x^{(i)}\right)-y^{(i)}\right\|_{2}^{2},
$$

where $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}$ are training data

- Steepest/gradient descent

$$
p \longleftarrow p-\tau \nabla \operatorname{Cost}(p)
$$

where τ is known as the learning rate.

The underlying operations of DL are stunningly simple, mostly matrix-vector products, but extremely intense.

Experiment 1

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Experiment 1

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Question for DL: How to classify the rest of points, say where should we propose a new drilling site for the desired outcome?

Experiment 1

Classification after 90 seconds training on my desktop

Experiment 1

Classification after 90 seconds training on my desktop

Experiment 1

The value of $\operatorname{Cost}\left(W^{[\cdot]}, b^{[\cdot]}\right)$:

Experiment 2

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Experiment 2

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Question for DL: How to classify the rest of points, say where should we propose a new drilling site for the desired outcome?

Experiment 2

Classification after 90 seconds training on my desktop

Experiment 2

Classification after 90 seconds training on my desktop

Experiment 2

The value of $\operatorname{Cost}\left(W^{[\cdot]}, b^{[\cdot]}\right)$:

Experiment 3

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Experiment 3

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Question for DL: How to classify the rest of points, say where should we propose a new drilling site for the desired outcome?

Experiment 3

Classification after 16 seconds training on my desktop

Experiment 3

Classification after 16 seconds training on my desktop

Experiment 3

Classification after 38 seconds training on my desktop

Experiment 3

Classification after 38 seconds training on my desktop

Experiment 3

Classification after 46 seconds training on my desktop

Experiment 3

Classification after 46 seconds training on my desktop

Experiment 3

Classification after 62 seconds training on my desktop

Experiment 3

Classification after 62 seconds training on my desktop

Experiment 3

Classification after 83 seconds training on my desktop

Experiment 3

Classification after 83 seconds training on my desktop

Experiment 3

Classification after 156 seconds training on my desktop

Experiment 3

Classification after 156 seconds training on my desktop

Experiment 3

The value of $\operatorname{Cost}\left(W^{[\cdot]}, b^{[\cdot]}\right)$:

Experiment 4

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Experiment 4

Given training data with categories $A(\circ)$ and $B(\times)$, say well drilling sites with different outcomes

Question for DL: How to classify the rest of points, say where should we propose a new drilling site for the desired outcome?

Experiment 4

Classification after 90 seconds training on my desktop

Experiment 4

Classification after 90 seconds training on my desktop

Experiment 4

The value of $\operatorname{Cost}\left(W^{[\cdot]}, b^{[\cdot]}\right)$:

"Perfect Storm"

1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of

"Perfect Storm"

1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of

- large labeled datasets;
- improved hardware;
- clever parameter constraints;
- advancements in optimization algorithms;
- more open sharing of stable, reliable code leveraging the latest in methods.

"Perfect Storm"

1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of

- large labeled datasets;
- improved hardware;
- clever parameter constraints;
- advancements in optimization algorithms;
- more open sharing of stable, reliable code leveraging the latest in methods.

2. ANN is simultaneously one of the simplest and most complex methods:

"Perfect Storm"

1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of

- large labeled datasets;
- improved hardware;
- clever parameter constraints;
- advancements in optimization algorithms;
- more open sharing of stable, reliable code leveraging the latest in methods.

2. ANN is simultaneously one of the simplest and most complex methods:

- learning to model and parameterization
- capable of self-enhancement
- generic computation architecture
- executable on local HPC and on cloud
- broadly applicable but requires good understanding of the underlying problems and algorthms

