# Introduction to Deep Learning



◆□ → < 部 → < 差 → < 差 → 差 < う へ (?) 1/24

# Is it a question?

**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



# Is it a question?

**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Question?** How to classify the rest of points, say *where should we propose a new drilling site for the desired outcome?* 

# AI via Machine Learning

1. Al via Machine Learning has advanced radically over the past 10 year.

# AI via Machine Learning

- 1. Al via Machine Learning has advanced radically over the past 10 year.
- 2. ML algorithms now achieve human-level performance or better on the tasks such as

# AI via Machine Learning

- 1. Al via Machine Learning has advanced radically over the past 10 year.
- 2. ML algorithms now achieve human-level performance or better on the tasks such as
  - face recognition
  - optical character recognition
  - speech recognition
  - object recognition
  - playing the game Go in fact, defeated human champions

# Al via Machine Learning

- 1. Al via Machine Learning has advanced radically over the past 10 year.
- 2. ML algorithms now achieve human-level performance or better on the tasks such as
  - face recognition
  - optical character recognition
  - speech recognition
  - object recognition
  - playing the game Go in fact, defeated human champions
- 3. Deep Learning becomes the centerpiece of ML toolbox.

Deep Learning = multilayered Artificial Neural Network (ANN).

- Deep Learning = multilayered Artificial Neural Network (ANN).
- A simple ANN with four layers



► An ANN in a mathematically term

► An ANN in a mathematically term

An ANN in a mathematically term

$$F(x) = \sigma \left( W^{[4]} \sigma \left( W^{[3]} \sigma (W^{[2]} x + b^{[2]}) + b^{[3]} \right) + b^{[4]} \right)$$

where

- ▶  $p := \{(W^{[2]}, b^{[2]}), (W^{[3]}, b^{[3]}), (W^{[4]}, b^{[4]})\}$  are parameters to be "trained/computed" from *training data*.
- $\sigma(\cdot)$  is an activiation function, say sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

The objective of training is to "minimize" a properly defined cost function, say

$$\min_{p} \mathsf{Cost}(p) \equiv \frac{1}{m} \sum_{i=1}^{m} \|F(x^{(i)}) - y^{(i)}\|_{2}^{2},$$

where  $\{(x^{(i)}, y^{(i)})\}$  are *training data* 

The objective of training is to "minimize" a properly defined cost function, say

$$\min_{p} \mathsf{Cost}(p) \equiv \frac{1}{m} \sum_{i=1}^{m} \|F(x^{(i)}) - y^{(i)}\|_{2}^{2},$$

where  $\{(x^{(i)}, y^{(i)})\}$  are *training data* 

Steepest/gradient descent

$$p \longleftarrow p - \tau \, \nabla \mathsf{Cost}(p)$$

where  $\tau$  is known as the *learning rate*.

The objective of training is to "minimize" a properly defined cost function, say

$$\min_{p} \mathsf{Cost}(p) \equiv \frac{1}{m} \sum_{i=1}^{m} \|F(x^{(i)}) - y^{(i)}\|_{2}^{2},$$

where  $\{(x^{(i)}, y^{(i)})\}$  are *training data* 

Steepest/gradient descent

$$p \longleftarrow p - \tau \, \nabla \mathsf{Cost}(p)$$

where  $\tau$  is known as the *learning rate*.

The underlying operations of DL are stunningly simple, *mostly matrix-vector products*, but extremely intense.

**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Question for DL:** How to classify the rest of points, say *where should we propose a new drilling site for the desired outcome?* 

Classification after 90 seconds training on my desktop

#### Classification after 90 seconds training on my desktop



The value of  $Cost(W^{[\cdot]}, b^{[\cdot]})$ :



**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Question for DL:** How to classify the rest of points, say *where should we propose a new drilling site for the desired outcome?* 

Classification after 90 seconds training on my desktop

#### Classification after 90 seconds training on my desktop



The value of  $Cost(W^{[\cdot]}, b^{[\cdot]})$ :



・ロ > ・ ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) 、 ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,

**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Question for DL:** How to classify the rest of points, say *where should we propose a new drilling site for the desired outcome?* 

Classification after 16 seconds training on my desktop

#### Classification after 16 seconds training on my desktop



Classification after 38 seconds training on my desktop

#### Classification after 38 seconds training on my desktop



Classification after 46 seconds training on my desktop

#### Classification after 46 seconds training on my desktop



Classification after 62 seconds training on my desktop

#### Classification after 62 seconds training on my desktop



Classification after 83 seconds training on my desktop

#### Classification after 83 seconds training on my desktop



Classification after 156 seconds training on my desktop

#### Classification after 156 seconds training on my desktop





**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Given** training data with categories  $A(\circ)$  and  $B(\times)$ , say well drilling sites with different outcomes



**Question for DL:** How to classify the rest of points, say *where should we propose a new drilling site for the desired outcome?* 

Classification after 90 seconds training on my desktop

#### Classification after 90 seconds training on my desktop



The value of  $Cost(W^{[\cdot]}, b^{[\cdot]})$ :



1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of

- 1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of
  - large labeled datasets;
  - improved hardware;
  - clever parameter constraints;
  - advancements in optimization algorithms;
  - more open sharing of stable, reliable code leveraging the latest in methods.

- 1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of
  - large labeled datasets;
  - improved hardware;
  - clever parameter constraints;
  - advancements in optimization algorithms;
  - more open sharing of stable, reliable code leveraging the latest in methods.
- 2. ANN is simultaneously one of the simplest and most complex methods:

- 1. The recent success of ANNs in ML, despite their long history, can be contributed to a "perfect storm" of
  - large labeled datasets;
  - improved hardware;
  - clever parameter constraints;
  - advancements in optimization algorithms;
  - more open sharing of stable, reliable code leveraging the latest in methods.
- 2. ANN is simultaneously one of the simplest and most complex methods:
  - learning to model and parameterization
  - capable of self-enhancement
  - generic computation architecture
  - executable on local HPC and on cloud
  - broadly applicable but requires good understanding of the underlying problems and algorithms