
Introduction to Deep Learning

• speed and accuracy guarantees (or lack thereof) of learning methods for DNNs [91, 92, 93,
94, 39, 95, 96]

This list, which still omits specialized analyses of specific optimization tricks such as dropout [97]
and newer architectures such as generative adversarial networks (GANS) [98, 99] or deep recurrent
networks [100], demonstrates just how relentless the search for meaning in DNNs has become. In the
breadth of possible interpretations, some interesting points begin to emerge. For one, there seems
to be a limitless number of interpretations for DNNs, apparently constrained only by the lens by
which the mathematical operations are viewed. Physics interpretations stem from researchers with
a physics background. Connections to sparsity and wavelets come from researchers well known for
important contributions to those fields. Ultimately, the interpretation of DNNs appears to mimic
a type of Rorschach test — a psychological test wherein subjects interpret a series of seemingly
ambiguous ink-blots [101] (see Figure 1). Rorschach tests depend not only on what (the result)
a subject sees in the ink-blots but also on the reasoning (methods used) behind the subject’s
perception, thus making the analogy particularly apropos.

Figure 1: What do you see? DNNs can be viewed in many ways. 1a. Stylistic example of a DNN
with an input layer (red), output layer (blue) and two hidden layers (green); example “ink blot”
for DNN theory. 1b. Example (normalized) ink blot from the Rorschach test.

On the one hand, is unsurprising given DNNs status as arbitrary function approximators. Spe-
cific network weights and nonlinearities allow DNNs to easily adapt to various narratives. On the
other hand, they are not unique in their permitting multiple interpretations. One can likewise view
standard, simpler, algorithms through various lenses. For example one can derive the Kalman filter
— a time-tested algorithm for tracking a vector over time — from at least three interpretations: :
the orthogonality principle [102], Bayesian maximum a-priori estimation [103, 104], and low-rank
updates for least-squares optimization [105]. These three derivations allow people with different
mathematical mindsets (i.e., linear algebra versus probability theory) to understand the algorithm.

Yet compared to DNNs, the Kalman filter is simple, consisting of only a handful of linear-
algebraic operations. It’s function is completely understood, allowing each viewpoint to be val-
idated despite the different underlying philosophies. Similar validation for DNN theory requires
a convergence of the literature. We must distinguish between universal results that are invariant
to the analysis perspective and those that are specific to a particular network configuration. A
healthy debate is already underway, with respect to the information bottleneck interpretation of
DNNs [63, 106]. We must also better understand how the functions DNNs perform, their mathe-
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Is it a question?

Given training data with categories A (◦) and B (×), say well drilling sites
with different outcomes

Question? How to classify the rest of points, say where should we propose
a new drilling site for the desired outcome?
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AI via Machine Learning

1. AI via Machine Learning has advanced radically over the past 10 year.

2. ML algorithms now achieve human-level performance or better on the
tasks such as

I face recognition
I optical character recognition
I speech recognition
I object recognition
I playing the game Go – in fact, defeated human champions

3. Deep Learning becomes the centerpiece of ML toolbox.
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Deep Learning

I Deep Learning = multilayered Artificial Neural Network (ANN).

I A simple ANN with four layers

Layer 1
(Input layer)

Layer 2

Layer 3

Layer 4
(Output layer)

Figure 3: A network with four layers.

to the two neurons in layer two. Since the input data has the form x ∈ R2, the
weights and biases for layer two may be represented by a matrix W [2] ∈ R2×2

and a vector b[2] ∈ R2, respectively. The output from layer two then has the
form

σ(W [2]x+ b[2]) ∈ R2.

Layer three has three neurons, each receiving input in R2. So the weights and
biases for layer three may be represented by a matrix W [3] ∈ R3×2 and a vector
b[3] ∈ R3, respectively. The output from layer three then has the form

σ
(
W [3]σ(W [2]x+ b[2]) + b[3]

)
∈ R3.

The fourth (output) layer has two neurons, each receiving input in R3. So the
weights and biases for this layer may be represented by a matrix W [4] ∈ R2×3

and a vector b[4] ∈ R[2], respectively. The output from layer four, and hence
from the overall network, has the form

F (x) = σ
(
W [4]σ

(
W [3]σ(W [2]x+ b[2]) + b[3]

)
+ b[4]

)
∈ R2. (4)

The expression (4) defines a function F : R2 → R2 in terms of its 23
parameters—the entries in the weight matrices and bias vectors. Recall that
our aim is to produce a classifier based on the data in Figure 1. We do this
by optimizing over the parameters. We will require F (x) to be close to [1, 0]T

for data points in category A and close to [0, 1]T for data points in category B.
Then, given a new point x ∈ R2, it would be reasonable to classify it according
to the largest component of F (x); that is, category A if F1(x) > F2(x) and
category B if F1(x) < F2(x), with some rule to break ties. This requirement on
F may be specified through a cost function. Denoting the ten data points in
Figure 1 by {x{i}}10i=1, we use y(x{i}) for the target output; that is,

y(x{i}) =





[
1
0

]
if x{i} is in category A,

[
0
1

]
if x{i} is in category B.

(5)
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Deep Learning

I An ANN in a mathematically term

F (x) = σ

(
W [4] σ

(
W [3] σ(W [2]x+ b[2]) + b[3]

)
+ b[4]

)

where
I p := {(W [2], b[2]), (W [3], b[3]), (W [4], b[4])} are parameters to be

“trained/computed” from training data.

I σ(·) is an activiation function, say sigmoid function

σ(z) =
1

1 + e−z
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Deep Learning

I The objective of training is to “minimize” a properly defined cost
function, say

min
p

Cost(p) ≡ 1

m

m∑

i=1

‖F (x(i))− y(i)‖22,

where {(x(i), y(i))} are training data

I Steepest/gradient descent

p←− p− τ ∇Cost(p)

where τ is known as the learning rate.

The underlying operations of DL are stunningly simple, mostly
matrix-vector products, but extremely intense.
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Experiment 1

Given training data with categories A (◦) and B (×), say well drilling sites
with different outcomes

Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Experiment 1

Classification after 90 seconds training on my desktop
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Experiment 1

The value of Cost(W [·], b[·]):
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Experiment 2

Given training data with categories A (◦) and B (×), say well drilling sites
with different outcomes

Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Experiment 2

The value of Cost(W [·], b[·]):
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Experiment 3

Given training data with categories A (◦) and B (×), say well drilling sites
with different outcomes

Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Experiment 3

Classification after 16 seconds training on my desktop
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Experiment 3

Classification after 38 seconds training on my desktop
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Experiment 3

Classification after 46 seconds training on my desktop
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Experiment 3

Classification after 62 seconds training on my desktop
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Classification after 62 seconds training on my desktop
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Experiment 3

Classification after 83 seconds training on my desktop
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Experiment 3

Classification after 83 seconds training on my desktop
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Experiment 3

Classification after 156 seconds training on my desktop
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Experiment 3

Classification after 156 seconds training on my desktop
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Experiment 3

The value of Cost(W [·], b[·]):
16 38 46 62 83 156
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Experiment 4

Given training data with categories A (◦) and B (×), say well drilling sites
with different outcomes

Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Experiment 4

The value of Cost(W [·], b[·]):
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“Perfect Storm”

1. The recent success of ANNs in ML, despite their long history, can be
contributed to a “perfect storm” of

I large labeled datasets;
I improved hardware;
I clever parameter constraints;
I advancements in optimization algorithms;
I more open sharing of stable, reliable code leveraging the latest in

methods.

2. ANN is simultaneously one of the simplest and most complex
methods:

I learning to model and parameterization
I capable of self-enhancement
I generic computation architecture
I executable on local HPC and on cloud
I broadly applicable but requires good understanding of the underlying

problems and algorthms
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