ECS130

Eigenvectors - Chapter 6

February 1, 2019

Eigenvalue problem

For a given $A \in \mathbb{C}^{m \times n}$, find $0 \neq x \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$, such that

$$
A x=\lambda x
$$

- x is called an eigenvector
- λ is called an eigenvalue
- (λ, x) is called an eigenpair

Motivation

Principal Component Analysis (PCA)

$\operatorname{minimize}_{v} \sum_{i}\left\|x_{i}-\operatorname{proj}_{v} x_{i}\right\|_{2}$ subject to $\|v\|_{2}=1$

Motivation

Spectral Embedding

(a) Database of photos

(b) Spectral embedding

$$
\begin{array}{ll}
\operatorname{minimize}_{x} & E(x)=\sum_{i, j} w_{i j}\left(x_{i}-x_{j}\right)^{2} \\
\text { subject to } & x^{T} \mathbf{1}=0 \\
& \|x\|_{2}=1,
\end{array}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$.

Eigenvalues and eigenvectors

Let $A \in \mathbb{C}^{n \times n}$.

1. A scalar λ is an eigenvalue of an $n \times n A$ and a nonzero vector $x \in \mathbb{C}^{n}$ is a corresponding (right) eigenvector if

$$
A x=\lambda x .
$$

A nonzero vector y is called a left eigenvector if

$$
y^{H} A=\lambda y^{H} .
$$

2. The set $\lambda(A)=\{$ all eigenvalues of $A\}$ is called the spectrum of A.
3. The characteristic polynomial of A is a polynomial of degree n :

$$
p(\lambda)=\operatorname{det}(\lambda I-A) .
$$

Properties

The following is a list of properties straightforwardly from above definitions:

1. λ is A 's eigenvalue $\Leftrightarrow \lambda I-A$ is singular \Leftrightarrow $\operatorname{det}(\lambda I-A)=0 \Leftrightarrow p(\lambda)=0$.
2. There is at least one eigenvector x associated with A 's eigenvalue λ.
3. Suppose A is real. λ is A 's eigenvalue \Leftrightarrow conjugate $\bar{\lambda}$ is also A 's eigenvalue.
4. A is singular $\Leftrightarrow 0$ is A 's eigenvalue.
5. If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

Schur decomposition

Let A be of order n. Then there is an $n \times n$ unitary matrix U (i.e., $U^{H} U=I$) such that

$$
A=U T U^{H}
$$

where T is upper triangular.
By the decomposition, we know that the diagonal elements of T are the eigenvalues of A.

Spectral Theorem

If A is Hermitian, i.e., $A^{H}=A$, then by Schur decomposition, we know that there exist an unitary matrix U such that

$$
A=U \Lambda U^{H}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Furthermore, all eigenvalues λ_{i} are real.

Spectral theorem is considered a crowning result of linear algebra.

Simple and defective matrices

$A \in \mathbb{C}^{n \times n}$ is simple if it has n linearly independent eigenvectors; otherwise it is defective.
Examples.

1. I and any diagonal matrices is simple. $e_{1}, e_{2}, \ldots, e_{n}$ are n linearly independent eigenvectors.
2. $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$ is simple. It has two different eigenvalues -1 and 5 , it has 2 linearly independent eigenvectors: $\frac{1}{\sqrt{2}}\binom{-1}{1}$ and $\frac{1}{\sqrt{5}}\binom{1}{2}$.
3. If $A \in \mathbf{C}^{n \times n}$ has n different eigenvalues, then A is simple.
4. $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$ is defective. It has two repeated eigenvalues 2 , but only one eigenvector $e_{1}=(1,0)^{T}$.

Eigenvalue decomposition

$A \in \mathbb{C}^{n \times n}$ is simple if and only if there exisits a nonsingular matrix $X \in \mathbf{C}^{n \times n}$ such that

$$
A=X \Lambda X^{-1},
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
In this case, $\left\{\lambda_{i}\right\}$ are eigenvalues, and columns of X are eigenvectors, and A is called diagonalizable.

Similarity transformation

- $n \times n$ matrices A and B are similar if there is an $n \times n$ non-singular matrix P such that $B=P^{-1} A P$.
- We also say A is similar to B, and likewise B is similar to A;
- P is a similarity transformation. A is unitarily similar to B if P is unitary.
- Properties. Suppose that A and B are similar:

$$
B=P^{-1} A P
$$

1. A and B have the same eigenvalues. In fact $p_{A}(\lambda) \equiv p_{B}(\lambda)$.
2. $A x=\lambda x \Rightarrow B\left(P^{-1} x\right)=\lambda\left(P^{-1} x\right)$.
3. $B w=\lambda w \Rightarrow A(P w)=\lambda(P w)$.
