ECS130

Eigenvectors – Chapter 6

February 1, 2019

Eigenvalue problem

For a given $A \in \mathbb{C}^{m \times n}$, find $0 \neq x \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$, such that

 $Ax = \lambda x.$

- x is called an eigenvector
- λ is called an eigenvalue
- (λ, x) is called an eigenpair

Motivation

Principal Component Analysis (PCA)

minimize_v
$$\sum_{i} ||x_i - \text{proj}_v x_i||_2$$

subject to $||v||_2 = 1$

Motivation

Spectral Embedding

(a) Database of photos

(b) Spectral embedding

 x_n

minimize_x
$$E(x) = \sum_{i,j} w_{ij} (x_i - x_j)^2$$

subject to $x^T \mathbf{1} = 0$
 $\|x\|_2 = 1,$

where $x = (x_1, x_2, ..., x_n)^T$.

Eigenvalues and eigenvectors Let $A \in \mathbb{C}^{n \times n}$.

1. A scalar λ is an *eigenvalue* of an $n \times n A$ and a nonzero vector $x \in \mathbb{C}^n$ is a corresponding *(right) eigenvector* if

$$Ax = \lambda x.$$

A nonzero vector y is called a *left eigenvector* if

$$y^H A = \lambda y^H.$$

- 2. The set $\lambda(A) = \{ \text{all eigenvalues of } A \}$ is called the *spectrum* of A.
- 3. The *characteristic polynomial* of *A* is a polynomial of degree *n*:

$$p(\lambda) = \det(\lambda I - A).$$

Properties

The following is a list of properties straightforwardly from above definitions:

- 1. λ is A's eigenvalue $\Leftrightarrow \lambda I A$ is singular $\Leftrightarrow \det(\lambda I A) = 0 \Leftrightarrow p(\lambda) = 0.$
- 2. There is at least one eigenvector x associated with A's eigenvalue λ .
- 3. Suppose A is real. λ is A's eigenvalue \Leftrightarrow conjugate $\overline{\lambda}$ is also A's eigenvalue.
- 4. A is singular $\Leftrightarrow 0$ is A's eigenvalue.
- 5. If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

Schur decomposition

Let A be of order n. Then there is an $n \times n$ unitary matrix U (i.e., $U^H U = I$) such that

 $A = UTU^H,$

where T is upper triangular.

By the decomposition, we know that the diagonal elements of T are the eigenvalues of A.

Spectral Theorem

If A is Hermitian, i.e., $A^{H} = A$, then by Schur decomposition, we know that there exist an unitary matrix U such that

 $A = U\Lambda U^H,$

where $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$. Furthermore, all eigenvalues λ_i are real.

Spectral theorem is considered a *crowning result* of linear algebra.

Simple and defective matrices

 $A \in \mathbb{C}^{n \times n}$ is *simple* if it has *n* linearly independent eigenvectors; otherwise it is *defective*. Examples.

1. I and any diagonal matrices is simple. e_1, e_2, \ldots, e_n are n linearly independent eigenvectors.

2. $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ is simple. It has two different eigenvalues -1 and 5, it has 2 linearly independent eigenvectors: $\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

3. If $A \in \mathbb{C}^{n \times n}$ has *n* different eigenvalues, then *A* is simple.

4. $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ is defective. It has two repeated eigenvalues 2, but only one eigenvector $e_1 = (1, 0)^T$.

Eigenvalue decomposition

 $A \in \mathbb{C}^{n \times n}$ is simple if and only if there exisits a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ such that

 $A = X\Lambda X^{-1},$

where $\Lambda = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$.

In this case, $\{\lambda_i\}$ are eigenvalues, and columns of X are eigenvectors, and A is called *diagonalizable*.

Similarity transformation

- ▶ $n \times n$ matrices A and B are *similar* if there is an $n \times n$ non-singular matrix P such that $B = P^{-1}AP$.
- We also say A is similar to B, and likewise B is similar to A;
- ▶ P is a similarity transformation. A is unitarily similar to B if P is unitary.
- ▶ **Properties.** Suppose that *A* and *B* are similar:

 $B = P^{-1}AP.$

 A and B have the same eigenvalues. In fact p_A(λ) ≡ p_B(λ).
Ax = λx ⇒ B(P⁻¹x) = λ(P⁻¹x).
Bw = λw ⇒ A(Pw) = λ(Pw).