ECS130

Eigenvectors - Chapter 6

February 4, 2019

Power method

- Power iteration:

Given an initial vector u_{0},
$i=0$
repeat

$$
t_{i+1}=A u_{i}
$$

$$
u_{i+1}=t_{i+1} /\left\|t_{i+1}\right\|_{2} \quad \text { (approximate eigenvector) }
$$

$$
\theta_{i+1}=u_{i+1}^{H} A u_{i+1} \quad \text { (approximate eigenvalue) }
$$

$$
i=i+1
$$

until convergence

- Simple stopping criterion: $\left|\theta_{i+1}-\theta_{i}\right| \leq t o l \cdot\left|\theta_{i}\right|$.

Power method

Example: Let

$$
A=\left[\begin{array}{ccc}
-261 & 209 & -49 \\
-530 & 422 & -98 \\
-800 & 631 & -144
\end{array}\right]
$$

and $\lambda(A)=\{10,4,3\}$.
Let $u_{0}=(1,0,0)^{T}$, then

i	1	2	3	\cdots	10
θ_{i}	994.49	13.0606	10.07191	\cdots	10.0002

Power method

Convergence analysis: Assume that A is diagonalizable, i.e.,

$$
A=X \Lambda X^{-1}
$$

with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. Then, we can show that

- $u_{i}=\frac{A^{i} u_{0}}{\left\|A^{i} u_{0}\right\|} \rightarrow x_{1} /\left\|x_{1}\right\|$, where $x_{1}=X e_{1}$ as $i \rightarrow \infty$.
- $\theta_{i} \rightarrow \lambda_{1}$ as $i \rightarrow \infty$.
- The convergence rate depends on $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.

Therefore, if $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$ is close to 1 , then the power method could be very slow convergent or doesn't converge at all.

Inverse iteration

Purposes:

- Overcome the drawbacks of the power method (slow convergence)
- find an eigenvalue closest to a particular given number (called shift): σ
Observation: if λ is an eigenvalue of A, then
- $\lambda-\sigma$ is an eigenvalue of $A-\sigma I$,
- $\frac{1}{\lambda-\sigma}$ is an eigenvalue of $(A-\sigma I)^{-1}$.

Inverse iteration

Given an initial vector u_{0} and a shift σ
$i=0$
repeat
solve $(A-\sigma I) t_{i+1}=u_{i}$ for t_{i+1}
$u_{i+1}=t_{i+1} /\left\|t_{i+1}\right\|_{2} \quad$ (approximate eigenvector)
$\theta_{i+1}=u_{i+1}^{H} A u_{i+1} \quad$ (approximate eigenvalue)
$i=i+1$
until convergence

If we change the shift σ in each iteration:

$$
\sigma=u_{i+1}^{H} A u_{i+1}
$$

we have a so-called Rayleigh quotient iteration.

Inverse iteration

Convergence analysis: Assume $A=X \Lambda X^{-1}$ with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and λ_{k} is the eigenvalue cloest to the shift σ. It can be shown that

- $u_{i} \rightarrow x_{k} /\left\|x_{k}\right\|$ as $i \rightarrow \infty$, where $x_{k}=X e_{k}$
- θ_{i} converges to $\lambda_{k} i \rightarrow \infty$.
- Convergence rate depends on $\max _{j \neq k} \frac{\left|\lambda_{k}-\sigma\right|}{\lambda_{j}-\sigma \mid}$.

Inverse iteration

1. Advantages:

- the ability to converge to any desired eigenvalue nearest to the shift σ;
- typically converges very quickly, and is particularly effective when we have a good approximation to an eigenvalue and want only its corresponding eigenvector.

2. Drawbacks:

- expensive in general: solving linear systems $(A-\sigma I) t_{i+1}=u_{i}$ for u_{i+1}, which could be very expensive for large matrices
- Only compute one eigenpair.

Orthogonal (subspace/simultaneous) iteration

- Purpose: compute p eigenvalues (and eigenvectors) at a time.
- Orthogonal iteration

Given an initial $n \times p$ orthogonal matrix Z_{0} $i=0$
repeat
$Y_{i+1}=A Z_{i}$
$Y_{i+1}=Z_{i+1} R_{i+1} \quad$ (QR decomposition)
$i=i+1$
until convergence

- The use of QR decomposition keeps the vectors spanning $\operatorname{span}\left\{A^{i} Z_{0}\right\}$ of full rank.

Orthogonal (subspace/simultaneous) iteration

Example: Let $Z_{0}=\left[e_{1}, e_{2}, e_{3}\right]$ and
$\mathrm{A}=$
$\begin{array}{llllll}-0.4326 & 1.1892 & -0.5883 & -0.0956 & -0.6918 & -0.3999\end{array}$
$\begin{array}{llllll}-1.6656 & -0.0376 & 2.1832 & -0.8323 & 0.8580 & 0.6900\end{array}$
$\begin{array}{llllll}0.1253 & 0.3273 & -0.1364 & 0.2944 & 1.2540 & 0.8156\end{array}$
$\begin{array}{llllll}0.2877 & 0.1746 & 0.1139 & -1.3362 & -1.5937 & 0.7119\end{array}$
$\begin{array}{llllll}-1.1465 & -0.1867 & 1.0668 & 0.7143 & -1.4410 & 1.2902\end{array}$
$\begin{array}{llllll}1.1909 & 0.7258 & 0.0593 & 1.6236 & 0.5711 & 0.6686\end{array}$
Eigvals of $\mathrm{A}=-2.1659+-0.5560 i, 2.1493,0.2111+-1.9014 i,-0.9548$
Eigenvalues of $Z_{i}^{T} A Z_{i}$ for $i=10,30,70$:

```
i=10: Eigvals of Z'_10*A*Z_10: -1.4383+-0.3479i, 2.1500
i=30: Eigvals of Z'_30*A*Z_30: -2.1592+-0.5494i, 2.1118
i=70: Eigvals of Z'_70*A*Z_70: -2.1659+-0.5560i, 2.1493
```


Orthogonal (subspace/simultaneous) iteration

Convergence results:

- under mild conditions, Z_{i} converges to a subspace spanned by the first p eigenvectors corresponding to the p dominant eigenvalues, where

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

- If we let $B_{i}=Z_{i}^{T} A Z_{i}$, then

$$
\left\|A Z_{i}-Z_{i} B_{i}\right\| \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

and eigenvalues of B_{i} approximate the dominant eigenvalues of A.

- Convergence rate depends on $\left|\lambda_{p+1}\right| /\left|\lambda_{p}\right|$.

QR iteration

- Goal: reorganize orthogonal iteration to incorporate shifting and inverting as in the inverse iteration. This will make it more efficient and eliminate the assumption that eigenvalues differ in magnitude.
- QR iteration

$$
\begin{aligned}
& A_{0}=A \\
& i=0 \\
& \text { repeat } \\
& \quad A_{i}=Q_{i} R_{i} \quad(\mathrm{QR} \text { decomposition }) \\
& \quad A_{i+1}=R_{i} Q_{i} \\
& \quad i=i+1
\end{aligned}
$$

until convergence

QR iteration

Properties:

- Observe that $A_{i+1}=R_{i} Q_{i}=Q_{i}^{T} Q_{i} R_{i} Q_{i}=Q_{i}^{T} A_{i} Q_{i}$. Therefore it performs an orthogonal similarity transformation at each iteration.
- A_{i+1} is orthogonally similar to $A_{0}=A$:

$$
A_{i+1}=\left(Q_{0} Q_{1} \cdots Q_{i-1} Q_{i}\right)^{T} A\left(Q_{0} Q_{1} \cdots Q_{i-1} Q_{i}\right)
$$

Therefore A_{i+1} and A have same eigenvalues. (why? homework)

QR iteration

Example. The same test matrix as before.

After 10 iterations:

A_10 $=$					
-1.6994	0.2201	-0.8787	-1.4292	-0.3847	0.0112
-0.0007	1.1325	1.2186	1.2245	-0.0867	0.0648
0.2637	1.9636	-0.1598	-2.3959	0.8136	-0.4311
0.0364	-0.2346	-0.5527	-0.4393	-1.9263	1.2496
0.4290	1.3482	-1.1484	0.6121	-0.5937	0.2416
0.0003	0.0013	-0.0003	-0.0011	0.0014	-0.9554

QR iteration

Example. The same test matrix as before.

After 30 iterations:

A_30 $=$					
-2.4055	-1.0586	1.3420	-0.0991	1.1210	0.1720
0.0517	0.9645	1.6519	-0.8512	-0.7215	0.7654
-0.2248	1.9947	-0.7656	-1.1876	-0.2736	-0.1552
-0.0029	-0.0263	-0.0682	0.1381	-2.3094	0.6765
-0.0147	0.0808	-0.0569	1.5462	0.3082	-0.8476
0.0000	0.0000	0.0000	0.0000	0.0000	-0.9548

- From the last rwo of A_{30}, we can conclude "-0.9548 is an eigenvalue of A ".
- The subsequent QR iterations are performed on the leading 4×4 submatrices to find the rest of eigenvalues.

QR iteration with shifts \Rightarrow QR Algorithm

1. Purpose: accelerate the convergence of QR iteration by using shifts
2. QR Iteration with shifts

$$
\begin{aligned}
& A_{0}=A ; i=0 \\
& \text { repeat } \\
& \quad \text { Choose a shift } \sigma_{i} \\
& \quad A_{i}-\sigma_{i} I=Q_{i} R_{i} \\
& A_{i+1}=R_{i} Q_{i}+\sigma_{i} I \\
& \quad i=i+1 \\
& \text { until convergence }
\end{aligned}
$$

$$
A_{i}-\sigma_{i} I=Q_{i} R_{i} \quad(\mathrm{QR} \text { decomposition })
$$

QR iteration with shifts \Rightarrow QR Algorithm

Property:

- A_{i} and A_{i+1} are orthogonally similar: $A_{i+1}=Q_{i}^{T} A_{i} Q_{i}$.
- Therefore, A_{i+1} and A are orthogonally similar, and A_{i+1} and A have the same eigenvalues.
why? homework!

QR iteration with shifts \Rightarrow QR Algorithm

How to choose the shifts σ_{i} ?

- If σ_{i} is an exact eigenvalue of A, then it can be shown that

$$
A_{i+1}=R_{i} Q_{i}+\sigma_{i} I=\left[\begin{array}{cc}
\widehat{A} & a \\
0 & \sigma_{i}
\end{array}\right] .
$$

This means that the algorithm converges in one iteration. If more eigenvalues are wanted, we can apply the algorithm again to the $(n-1) \times(n-1)$ matrix \widehat{A}.

- In practice, pick $\sigma_{i}=A_{i}(n, n)$.

Reason: observing that the convergence of the QR iteration (without a shift), the (n, n) entry of A_{i} usually converges to an eigenvalue of A first.

QR iteration with shifts \Rightarrow QR Algorithm

Example. The same test matrix as before. The following is the numerical result of QR iteration with a shift.

With the shift $\sigma_{0}=2.1493$, an "exact" eigenvalue of A, after one iteration:

A_1 =					
-1.4127	1.4420	1.0845	-0.6866	-0.1013	-0.2042
-1.2949	-0.2334	1.4047	-1.3695	1.5274	-0.7062
0.5473	0.1343	-0.7991	-0.6716	1.1585	0.0736
-0.2630	0.0284	0.5440	-1.4616	-1.5892	0.9205
-1.6063	-0.3898	0.3410	0.1623	-0.9576	-0.5795
0.0000	0.0000	0.0000	0.0000	0.0000	2.1493

We observe that by the QR iteration converged in one-iteration.

QR iteration with shifts \Rightarrow QR Algorithm

With the shifts $\sigma_{i}=A_{i}(n, n)$, after 7 iteration:

A_7 $=$ -2.4302	2.0264	-0.2799	-0.2384	0.3210	-0.0526
-0.1865	-1.4295	-1.3515	0.0812	0.8577	-0.0388
-0.1087	-0.8991	0.4491	0.4890	-1.8463	-1.2034
-0.0008	0.0511	-0.5997	-0.7839	-0.8088	-0.5188
-0.0916	-0.8273	1.6940	0.0645	-0.6698	-0.0854
0.0000	0.0000	0.0000	0.0000	0.0000	2.1493

We observe that by 7th iteration, from the last row, we have found an eigenvalue 2.1493 of A. The subsequent QR iterations with shift are then performed on the leading 4×4 submatrices to find the rest of eigenvalues.

QR iteration with shifts \Rightarrow QR Algorithm

1. The QR decomposition takes $\mathcal{O}\left(n^{3}\right)$ flops. Even if the QR iteration took n iterations to converge, the overall cost will be $\mathcal{O}\left(n^{4}\right)$. This is too expensive. ${ }^{1}$
2. However, if the matrix is initially reduced to upper Hessenberg form, then the QR decomposition of a Hessenberg form costs $\mathcal{O}\left(n^{2}\right)$ flops. As a result, the overall cost of the algorithm is reduced to $\mathcal{O}\left(n^{3}\right)$. This is referred to as the Hessenberg QR algorithm.
3. The Hessenberg QR algorithm is the method of choice for dense eigenvalue problem today, and is considered as one of the top 10 algorithms invented in the 20th century.
[^0]
[^0]: ${ }^{1}$ The complexity of algorithms for all standard matrix computation problems is at $\mathcal{O}\left(n^{3}\right)$.

